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Abstract

This paper studies the effects of moral hazard on employment and wage dynamics in a
continuous-time competitive search model. Unobservable idiosyncratic factors require employ-
ers to design dynamic contracts to incentivize workers to exert effort. A higher level of public
aggregate productivity reduces the relative importance of unobservable idiosyncratic factors,
which facilitate the detection of shirking and relaxes firms’ incentive constraint. This channel
amplifies the elasticity of vacancy to changes in aggregate productivity and induces time-varying
schemes in wage compensation. When the informational friction is disciplined by the moment
on individual workers’ performance pay in PSID, the model produces significantly higher un-
employment volatility than that without the moral hazard problem. In addition, the model
generates endogenous counter-cyclical wage distributions.
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1. Introduction

Two types of frictions are pervasive in the labor market: search frictions that prevent full employment
and moral hazard that prevents efficient production. The literature has made significant progress
in understanding the effects of each of these frictions in isolation, while much less is known about
how their joint presence shapes labor market outcomes. In this paper, we provide a quantitative
evaluation of this question.

We build a competitive search model with aggregate productivity shocks. In contrast to a
canonical search model, the output produced by a firm-worker pair depends on three components:
a public observed productivity shock, unobserved efforts by workers that complement with the
productivity shock, and an unobservable idiosyncratic factor. The difficulty in separating the latter
two components is the root of the moral hazard problem. Instead of offering a constant wage plan
which results in shirking, firms are better off by providing a dynamic wage contract to incentivize
workers to exert effort. Solving for the optimal contract can be technically demanding, as the
history of firms’ outputs and workers’ distribution amount to potential state variables. To make this
model tractable, we combine the continuous-time approach to address the principle-agent problem
(Sannikov, 2008) with block recursive equilibrium (Menzio and Shi, 2010). The former permits a
recursive formulation of the optimal contract that can be characterized by a convenient ordinary
differential equation, and the latter allows us to simply trace the aggregate productivity without
worrying about other aspects of the economy. Thanks to this tractability, we can explore the model’s
implications for employment volatility and wage dynamics.

Qualitatively, three main findings stand out when the moral hazard issue is taken into account,
all of which help to bring the model’s predictions closer to the data. First, the employment rate is
more responsive to the aggregate productivity shock. To see why this is the case, consider the effects
of a positive productivity shock. Ceteris paribus, higher productivity increases the production
efficiency. More importantly, it also enlarges the role of workers’ effort in determining firms’ output
relative to idiosyncratic factors. In other words, any deviation of effort from its desired level becomes
easier to detect. As a result, firms’ incentive constraint is relaxed, which leads to higher profit and
more vacancy posting. The counter-cyclical information rent amplifies the effects of productivity
shocks on employment. In contrast, in an environment where workers’ effort is observable, higher
productivity still improves production efficiency, but the additional incentive channel is muted.

Second, the wage dispersion is endogenously counter-cyclical. In the absence of moral hazard, a
risk-neutral firm finds it optimal to offer a constant compensation plan such that perfect risk sharing
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is achieved for risk-averse workers. This plan becomes suboptimal when effort is unobservable as
workers will always choose to shirk. To provide incentive, it is necessary to vary compensation
with output which exposes workers to a certain level of risk. Related to the previous discussion,
with a higher productivity, the more relaxed incentive constraint also reduces firms’ need to expose
workers to risk. Consequently, compensation is less volatile over time and less cross-sectionally
dispersed.

Third, the individual wage dynamics feature a scarring effect of unemployment, a slow recovery
from the low compensation trap and strong persistence in the labor income. Similar to DeMarzo,
Fishman, He, and Wang (2012) and Bolton, Chen, and Wang (2011), the optimal contract requires the
average compensation to be back-loaded to provide dynamic incentives. A typical worker’s wage
path grows with her job tenure, as if reputation is accumulated gradually. When separated from
a job, the existing reputation disappears, and a worker has to rebuild her reputation from scratch
after re-employment. This property helps rationalize the documented scarring effect. In addition,
the dynamic contract induces endogenous persistence of compensation in response to transitory
idiosyncratic factors due to the fact that a workers’ outside option is a reflective boundary of the
promised utility. When the promised utility drifts towards this bound, it immediately leaves this
bound but will return to it frequently whenever a bad idiosyncratic factor realizes again (Grochulski
and Zhang, 2019). Therefore, a worker may be trapped at a low compensation regime for a relatively
long time.

To quantify these effects, it is crucial to discipline the underlying information friction faced
by firms. In our setup, this friction is parameterized by the variance of unobserved idiosyncratic
factors. Our calibration strategy is to match the moments related to the performance-pay residual in
the Panel Study of Income Dynamics (PSID) after controlling for observed workers’ characteristics.
We focus on the performance pay instead of the regular wage as the former is more directly related
to firms’ needs to provide incentives and it mitigates the concern that firms may have information
advantage on firm-worker pairs over econometricians when setting wages. The variance of the
idiosyncratic factor is then recovered by the method of indirect inference: we choose the parameters
such that when running the same regression using model-generated data, the moments related to
the performance-pay residual is the same as that obtained using PSID data.

We first conduct comparative statics analysis by comparing unemployment rates across different
steady-state productivity levels. Under our baseline calibration, the unemployment rate elasticity
with respect to aggregate productivity is −0.27, which is 3 times higher than that in the environment
without the moral hazard issue. With the moral hazard problem, the response of unemployment
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can be decomposed to an efficiency component and an incentive component. It turns out that
the quantitative importance of these two channels are comparable to each other. With recurrent
productivity shocks, the model can account for about 50% the observed unemployment rate volatility,
which is significantly higher than that in the model without informational frictions.

The baseline model also generates strong counter-cyclical wage dispersion: the correlation be-
tween aggregate output and wage dispersion is −0.34. This is consistent with the empirical findings
in Storesletten, Telmer, and Yaron (2004). Notably, the distribution of a primitive idiosyncratic fac-
tor across business cycles remains invariant, whereas the interaction between aggregate economic
conditions and the optimal contract endogenously shifts the wage distribution.

In terms of individual wage dynamics, the model predicts a significant wage scarring effect.
The first-year wage payment in the new job spell is 54% less than the most recent payment from
the last job. This scarring effect of unemployment is also broadly consistent with Jacobson et al.
(1993), Couch and Placzek (2010), and Barnette and Michaud (2011), who document that wages
decline by 15% − 40% after job displacement. Second, the model features a lingering effect for
low-income workers. Conditional on hitting the lower bound of wage payment in the contract, it
takes a worker 8.7 quarters to recover to her economy average wage level. This helps to explain why
the model-implied income Gini coefficient is 0.22 despite that workers are homogeneous ex ante.

The presence of moral hazard also has important implications for government policies. We
conduct two counterfactual exercises based on our calibrated model: an increase of unemployment
benefits and an increase of the minimum wage. With a higher level of unemployment benefit,
unemployed workers are better off, which in turn improves the outside option of employed workers.
Not surprisingly, this change limits firms’ ability to punish their employees and tightens their
incentive constraint, which results in a higher unemployment rate in the long run. The dynamic
contract setup allows us to further inspect the heterogeneous impacts on workers’ compensation.
We find that the compensation for junior workers with a short tenure reduces most, while workers
whose tenure are longer than three years are affected much more mildly.

In the second policy experiment, minimum wage is imposed. As noted above, when moral
hazard is absent, firms would like to pay a constant compensation that depends only on the average
output during the job spell. The minimum wage requirement is therefore irrelevant, provided that
the constant compensation is large enough. With moral hazard, the history of output matters, and
the minimum wage constraint will be binding for a nonnegligible fraction of workers. We show that
the unemployment rate is highly sensitive to the minimum wage, and the incentive channel plays an
important role in driving this result. Furthermore, two competing forces shape the compensation

4



schedule: higher minimum wage tend to increase the compensation mechanically, while it reduces
back-loaded reward for reputation. These two forces leave the compensation for workers with short
tenure increasing, while the compensation for workers with long tenure dampened.

Related literature. This paper contributes to the growing literature that analyzes how micro-level
moral hazard effects transmit to macro-level business cycle fluctuations. It is most related to studies
on dynamic contract and labor market frictions.

Our work builds directly on the continuous-time optimal contract literature. We extend the
principal-agent problem in Sannikov (2008) to a general equilibrium framework, where workers’
outside option and the starting promised utility are determined endogenously. Moreover, we
allow for interaction between aggregate productivity shocks and workers’ incentive constraint,
which is necessary to understand the problem’s business cycle implications. From a technical
perspective, we incorporate the advance in Grochulski and Zhang (2019), which allows for a more
flexible arrangement when the promised utility reaches the worker’s outside option. It leads to
more realistic income inequality due to a slow reflection at the lower end. Compared with the
discrete-time dynamic contract model pioneered by Spear and Srivastava (1987),Holmstrom and
Milgrom (1987) and Phelan and Townsend (1991), the continuous-time method is more tractable,
for example DeMarzo and Sannikov (2006) and DeMarzo, Fishman, He, and Wang (2012) are some
of its applications in macro finance.

Our work is closely related to Moen and Rosén (2011), who also study how incentive contracts
affect labor search outcomes. We share the similarity that counter-cyclical information rents help to
amplify unemployment volatility. However, our paper differs from theirs in several important ways:
first, in Moen and Rosén (2011), the unobservable idiosyncratic factor remains constant during a job
spell. As a result, the optimal wage contract is constant over time. Our model complements their
work by allowing the unobservable idiosyncratic factor to be stochastic, and our optimal contract
is a long-term contract that provides dynamic incentives. The recurrent idiosyncratic factor makes
our model easier to connect to micro-level data to quantify the underlying information frictions.
Second, while Moen and Rosén (2011) focus on steady-state analysis, our model permits aggregate
productivity shocks, which makes it possible to directly examine unemployment volatility. Third,
the dynamic contract with recurrent idiosyncratic factors and productivity shocks also predicts
counter-cyclical wage dispersion and rich individual wage dynamics that are consistent with micro-
level evidence.

Our paper also belongs to a growing literature that studies the moral hazard problem in a
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general equilibrium environment. Payne (2018) and Phelan (2017) consider similar dynamic contract
problems to that in our paper, but their applications focus on the effects of moral hazard issues
in financial intermediary and entrepreneur business income, respectively. Doligalski, Ndiaye, and
Werquin (2020) studies nonlinear income taxation in a model where job features pay-for-performance
because of moral hazard. Li and Wang (2018) theoretically demonstrates that the existence of moral
hazard can generate endogenous labor market fluctuations. Lamadon (2016) investigates how match-
specific shocks transmit to worker compensation using matched employer-employee data, where the
effort is assumed to be avoid-to-terminate effort that does not directly enter the production function
as in Tsuyuhara (2016), and there is no aggregate productivity shock. On that front, Souchier (2022)
documents the pass-through of firm-level and sectoral productivity shocks to wages using French
employer-employee data.

Clearly, our paper builds on the search and matching framework developed by Diamond (1982)
and Mortensen and Pissarides (1994). We assume competitive search (Moen, 1997) and adopt block
recursive equilibrium (Menzio and Shi, 2010, 2011). We contribute to the literature by incorporating
the dynamic contract problem into the labor search framework and studying the interaction between
the two types of frictions. As documented in an influential paper by Shimer (2005), it is difficult for
the standard labor search model to account for the magnitude of unemployment fluctuations. Our
paper provides a different mechanism that amplifies the effects of aggregate productivity shocks
on labor market outcomes, which does not rely on nominal rigidities as in Hall (2005) and Gertler
and Trigari (2009) or on a high replacement ratio as in Hagedorn and Manovskii (2008). Our paper
also complements the literature which studies the firm’s hiring dynamics over business cycles: Bils,
Chang, and Kim (2022) consider a matching model with sticky wages within matches and variable
effort from workers. They find that effort’s response can greatly increase wage inertia. But the effort
in their framework is publicly observable to all. Kennan (2010) extends the Mortensen-Pissarides
model to allow the employer to have private information on idiosyncratic factors. The procyclicality
in information rents can generate higher unemployment fluctuation.

Outline. This paper is organized as follows. Section 2 describes the environment, the contracting
problem, and the search and matching problem, then solves them in a general equilibrium framework
and obtains the equilibrium. Section 3 calibrates the model and estimates individual risk using
micro-level data. Section 4 analyzes the steady-state model and elaborates the key channel that
generates the result through comparative statics analysis. Section 5 presents the quantitative results
in the dynamic model. Section 6 discusses policy implications. Section 7 concludes the paper.
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2. Model

In this section we build a competitive search model that incorporates a repeated moral hazard
problem in a general equilibrium environment. We first focus on the analysis in steady state, and
later extend the model with aggregate productivity shocks in Section 5.

2.1 Model environment

Consider a small open economy where time is continuous. There is a single perishable consumption
good produced by pairwise firm-worker matches. The economy is populated with a large number
of risk-neutral firms and a continuum of infinitely-lived workers. Based on their statuses in the
labor market, workers are either employed or unemployed, and firms are either operating or staying
vacant.

We start with the employed workers and operating firms. Operating firms are assumed to have
full claim over all the residuals, offer a stream of consumption and advise workers to exert effort to
maximize their expected profits. We further assume that operating firms have unlimited access to
an international credit market – they can borrow or lend at a fixed interest rate 𝑟. Over time, firms
make a profit or incur a loss from the employment relationship and repay the borrowed amount or
withdraw savings from the international credit market.1 Workers, on the other hand, are assumed
to have access to neither saving technologies nor asset markets. Essentially, contracting with firms
is the only vehicle available for workers to make intertemporal transfers.

Preferences. Employed workers evaluate the contract according to

E

[
𝑟
∫ ∞

0
𝑒−𝑟𝑡

(
𝑢 (𝐶𝑡) − 𝜙 (𝐴𝑡)) 𝑑𝑡] ,

where 𝐶𝑡 is a nonnegative flow of consumption, and 𝐴𝑡 ∈ 𝒜 is the effort level. We impose the
following assumptions on the preference that are common in the literature on dynamic contract to
facilitate the analysis. The set of feasible effort levels 𝒜 is compact with the smallest element being
0. The worker’s utility is bounded form below (𝑢(0) = 0) and that 𝑢 : [0,∞) → [0,∞) is increasing,
concave and of class 𝐶2, with lim

𝐶→∞ 𝑢′(𝐶) = 0. The worker’s disutility 𝜙 : 𝒜 → ℛ is continuous,

1We do not need to worry about the firm’s liability issue here. We can either assume that firms that eventually incur
net negative profit can file for bankruptcy or assume that one firm can hire a continuum of workers and that by law of
large numbers, the firm will always obtain a positive net profit.
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increasing and convex, with 𝜙(0) = 0. In addition, there is a 𝛾0 > 0 such that 𝜙(𝐴) ≥ 𝛾0𝐴 for all
𝐴 ∈ 𝒜. Finally, we assume that the discount rates for workers and firms are set at the common rate 𝑟,
implying that they are equally patient and that workers will eventually reach permanent retirement
if not exogenously separated from firms.2

Production. The total output 𝑌𝑡 is the cumulative output produced by an operating firm starting
from the moment it matches with a new worker and up to time 𝑡. 𝑑𝑌𝑡 is the current output flow,
which evolves according to

𝑑𝑌𝑡 = (𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡) · 1𝑡∈[0,𝜏).

The amount of output is determined by three factors: the productivity 𝑧, the worker’s effort level 𝐴𝑡 ,
and an idiosyncratic factor captured by the Brownian motion 𝑑𝐵𝑡 with volatility 𝜎. The productivity
𝑧 and the effort 𝐴𝑡 complements each other. Importantly, the operating firm can only observe the
total output and cannot directly separate the effort level from the idiosyncratic factor. This creates
room for workers to shirk. For now, we impose that the productivity 𝑧 is fixed, but we allow it to be
stochastic in Section 5.

Remark. In the baseline specification, we impose that the aggregate productivity 𝑧 only scales
the effect of effort 𝐴𝑡 on the output, but is independent of the effect of idiosyncratic factor 𝑑𝐵𝑡 .
This assumption holds naturally when we interpret the idiosyncratic factor as random disturbances
that are not directly related to aggregate economic conditions. One may conjecture in certain
environments the aggregate productivity could potentially amplify or dampen the effects of 𝑑𝐵𝑡 . To
accommodate this possibility, we also consider the following extension

𝑑𝑌𝑡 = (𝑧𝐴𝑡𝑑𝑡 + 𝑧𝜚𝜎𝑑𝐵𝑡) · 1𝑡∈[0,𝜏) , (1)

where the parameter 𝜚 controls the extent to which the productivity shifts the relative importance
of effort and noise in shaping the output. If 𝜚 > 0, the aggregate productivity amplifies the effects of
𝑑𝐵𝑡 , otherwise, it dampens. We will discuss in more details how our model predictions are modified
under different values of 𝜚 in section 4.1.

Separation. The contract may be terminated under two circumstances: one is that workers quit
and switch to their outside option (endogenous separation); the other is that the contract is hit by an

2If the worker is more patient than the firm, we can reasonably expect that the payment to the worker to be more
“back-loaded” (firms tend to postpone the payment to the future). Vice versa, if the worker is more impatient than the
firm, the payment to the worker will be less “back-loaded”.
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exogenous separation shock 𝑁𝑥,𝑡 with the Poisson arrival rate 𝜆𝑥 (exogenous separation).3 We use 𝜏

to denote the random termination time of an employment relationship. Upon separation, employed
workers immediately join the unemployment pool and lose all their past employment history and
output record; remaining operating firms are worthless and are therefore destroyed.4

Search market. The search process is directed a lá Moen (1997). For simplicity, we abstract from
on-the-job search, so at any time, only the unemployed workers are searching for jobs, and only
vacant firms are posting jobs. A jobless worker enjoys a flow value of benefit 𝑏, while an idle firm
obtains zero flow return. Firms must pay a flow cost 𝑘 to keep a vacancy open to applications. There
are potentially many submarkets indexed by the worker’s expected lifetime promised utility𝑊0, and
firms and workers can choose which market they want to enter.

Within a submarket, new jobs are formed according to a constant return to scale matching
technology 𝑚(𝑣, 𝑢), where 𝑣 (𝑊0) and 𝑢 (𝑊0) are the measure of vacancies created by firms and the
measure of workers searching for jobs in submarket 𝑊0, respectively. Denote 𝜃(𝑊0) = 𝑣(𝑊0)/𝑢(𝑊0)
as the tightness of submarket 𝑊0. The firm’s job filling rate in a particular submarket is 𝑞 (𝜃) =

𝑚(𝑣, 𝑢)/𝑣, and the worker’s job finding rate in a particular submarket is 𝑝 (𝜃) = 𝑚(𝑣, 𝑢)/𝑢. We
further assume that 𝑞′(𝜃) < 0 and 𝑝′(𝜃) > 0 to guarantee that in a tighter market (with a lower 𝜃), it
is easier for firms to fill vacancies but more difficult for workers to find a job.

2.2 Contracting problem

Now we turn to the contract problem between a pair of matched firm and worker. In the dynamic
setting, the firm has to specify how the compensation is related to the current and past outcomes—a
repeated moral hazard problem.

Perfect-information benchmark. Before exploring the properties of constrained optimal contract,
we first discuss the optimal contract under perfect information, where all idiosyncratic factors are
publicly observable such that any deviation from the optimal effort can be accurately punished. This
first-best case serves as a useful benchmark for the repeated moral hazard problem.

3We will show that by allowing for temporary suspension of workers, the optimal contract will eliminate all endogenous
separations. When workers are temporarily suspended, they devote zero effort, and the output remains zero. Furthermore,
retirement is a special stage in an employment relationship and is thus not considered separation.

4One may assume that after separation, instead of vanishing, operating firms become vacant again and start to search
for new workers, but the free entry condition guarantees that all vacant firms obtain zero expected profit, and the measure
of operating firms is determined by this free entry condition. Thus, it does not matter whether firms still exist and become
vacant for a next worker or simply completely vanish after separations.
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To proceed, it is useful to define the notion of continuation value. For a stream of contingent
compensation and advised effort (𝐶𝑡 , 𝐴𝑡), the continuation value is the worker’s expected discounted
utility by following the recommendation,

𝑊𝑡 = E𝑡

[
𝑟
∫ 𝜏

𝑡
𝑒−𝑟(𝑠−𝑡)

[
𝑢 (𝐶𝑠) − 𝜙 (𝐴𝑠)

]
𝑑𝑠 + 𝑒−𝑟(𝜏−𝑡)𝑊𝑢

]
, (2)

where 𝑊𝑢 is the the expected utility for an unemployed worker as she will directly enter into the
unemployment pool once separated from a firm. Note that this is an endogenous object that will be
determined in the equilibrium.

If firms can perfectly observe the idiosyncratic factor, any deviation on the workers’ side can
then be precisely punished. For any initially promised utility 𝑊 chosen in the submarket, firms will
provide full insurance to workers and workers have no incentives to shirk.

Proposition 2.1. With perfect information, workers exert constant effort 𝐴𝐹𝐵(𝑊) and are compensated with
a constant stream of consumption 𝐶𝐹𝐵(𝑊):

𝐴𝐹𝐵(𝑊) = argmax
𝐴∈𝒜

𝑧𝐴 − 𝑢−1 [
𝑟𝑊 + 𝜙(𝐴) − (𝑊𝑢 −𝑊)𝜆𝑥

]
𝑟 + 𝜆𝑥

,

𝐶𝐹𝐵(𝑊) = 𝑢−1 [
𝑟𝑊 + 𝜙(𝐴𝐹𝐵) − (𝑊𝑢 −𝑊)𝜆𝑥

]
.

Proof. See Appendix B.1. �

It is also useful to note that with perfect information, the idiosyncratic factor is irrelevant for
workers’ welfare, and it follows that it is irrelevant for the aggregate equilibrium outcomes. In
contrast, with asymmetric information, this contract is clearly not incentive compatible, and we will
see that the nature of the optimal contract interacts with the equilibrium condition.

With asymmetric information, the key issue is how to provide incentive for workers in the
most efficient way. When the compensation flow does not respond to outputs, workers will exert
minimum effort and hide behind the excuse of receiving adverse idiosyncratic factors. To motivate
workers, firms can instead sign contingent contracts with workers, which deliver workers a stream
of consumption that is correlated with their output.

The operating firm’s problem is to choose a stream of consumption 𝐶 ≡ {𝐶𝑡 , 0 ≤ 𝑡 < ∞} and
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recommendation of effort 𝐴 ≡ {𝐴𝑡 , 0 ≤ 𝑡 < ∞} to maximize their profit

max
𝐴,𝐶
E

[∫ 𝜏

0
𝑒−𝑟𝑡 (𝑑𝑌𝑡 − 𝐶𝑡𝑑𝑡)

]
, subject to

1. the contract delivers the worker the initial promised utility 𝑊0

E

[
𝑟
∫ 𝜏

0
𝑒−𝑟𝑡

(
𝑢 (𝐶𝑡) − 𝜙 (𝐴𝑡)

)
𝑑𝑡 + 𝑒−𝑟𝜏𝑊𝑢

]
≥ 𝑊0 ,

2. the advice of effort is incentive compatible.

Such contract should ensure that workers are paid back the utility as initially promised, and workers
are provided with proper incentives to exert effort as time evolves. The first constraint requires the
firm to fulfill the promise they made in the submarket indexed by 𝑊0. The exact form of the second
constraint lies in the center of the contract problem and is quite involved. We proceed by first
formulating the IC constraint and then characterizing the firm’s optimal contract.

2.2.1 IC constraint

In principle, the firm could and should rely on the entire history of performances to infer and
incentivize the worker’s effort. However, it is technically difficult to keep track of such an infinite-
dimension object. To circumvent this difficulty, we follow Spear and Srivastava (1987) and Sannikov
(2008) to use the promised utility (2) as a state variable that summarizes the worker’s past perfor-
mance. This strategy is well justified because of the recursive nature of the worker’s and the firm’s
problems. Intuitively, the worker’s incentives remain unchanged even if we replace the continuation
contract that follows a given history with a different contract, as long as this new contract provides
the same promised utility. Thus, to characterize the optimal dynamic contract, we can instead ensure
that following any history, the continuation contract is optimal given the worker’s promised utility.

With the promised utility 𝑊𝑡 as the state variable, its evolution given a contract that specifies
functions 𝐶 (𝑊) for compensation flow and 𝐴 (𝑊) for recommended effort level can be expressed
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as5

𝑑𝑊𝑡 = 𝑟
[
𝑊𝑡 − 𝑢 (𝐶(𝑊𝑡)) + 𝜙 (𝐴(𝑊𝑡))

]
𝑑𝑡 + 𝑟Ψ𝑏(𝑊𝑡) (𝑑𝑌𝑡 − 𝑧𝐴(𝑊𝑡)𝑑𝑡)︸               ︷︷               ︸

𝜎𝑑𝐵𝑡

+(𝑊𝑢 −𝑊𝑡) (𝑑𝑁𝑥,𝑡 − 𝜆𝑥𝑑𝑡) .

(3)

This differential equation specifies how the promised utility responds to the underlying stochastic
shocks. The process Ψ𝑏(𝑊𝑡) is the key component of the contract that measures its exposure to
the idiosyncratic factor. To better understand this evolution, imagine that the promised utility is
represented by a bank account at the firm where the worker deposits her utility. The utility in this
account requires a return rate of 𝑟. If the firm pays out compensation 𝐶, then 𝑢(𝐶) amount of utility
will be withdrawn from this account. If the worker works at effort intensity 𝐴, this account will
receive a deposit of 𝜙(𝐴). In the presence of separation shocks, the worker also requires additional
return 𝜆𝑥 for the potential utility loss.

Crucially, to incentivize the worker, this account should be set risky and correlated with out-
comes. This imposes conditions on the exposure to the idiosyncratic factor, Ψ𝑏(𝑊𝑡), as specified in
the following lemma.

Lemma 2.1. In an incentive-compatible contract, the exposure to the idiosyncratic factor satisfies

Ψ𝑏,𝑡 =
𝜙′ (𝐴𝑡)

𝑧
, (4)

and the promised utility evolves according to

𝑑𝑊𝑡 =
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)

) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥
]
𝑑𝑡 + 𝑟

𝜙′ (𝐴𝑡)
𝑧

𝜎𝑑𝐵𝑡 . (5)

Proof. See Appendix B.3 and Appendix B.4. �

According to (3), the marginal cost and marginal benefit of shirking for the worker are 𝑧Ψ𝑏,𝑡 and
𝜙′(𝐴), respectively. To prevent the worker from shirking, the exposure to the idiosyncratic factor
should be at least equating the marginal benefit of shirking with its cost, which leads to condition
(4). With the incentive-compatible exposure, the evolution of the promised utility is simplified to
(5), which will be leveraged momentarily as we formulate the optimal contract problem.

5The differential equation is derived in Appendix B.3.
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2.2.2 Recursive contract problem

Consider the recursive version of the firm’s problem. Denote 𝐹(𝑊) as the firm’s expected maximum
present value when promising𝑊 to the worker and is subject to the IC constraint. When first matched
with the worker in submarket 𝑊0, firm’s expected profit is simply 𝐹(𝑊0). The optimal contract
problem can be represented in the following form of Hamilton-Jacobi-Bellman (HJB) equation

(𝑟 + 𝜆𝑥) 𝐹 (𝑊𝑡) = max
𝐴(𝑊),𝐶(𝑊)

𝑧𝐴(𝑊𝑡) − 𝐶(𝑊𝑡)

+ 𝐹′ (𝑊𝑡)
{
𝑟
[
𝑊𝑡 − 𝑢 (𝐶(𝑊𝑡)) + 𝜙 (𝐴(𝑊𝑡))

] − (𝑊𝑢 −𝑊𝑡)𝜆𝑥
}

+ 𝐹′′ (𝑊𝑡)
2

[
𝑟
𝜙′ (𝐴(𝑊𝑡))

𝑧
𝜎

]2

.

(6)

The firm is maximizing the expected flow of profit plus expected change of future profit due to the
drift and volatility of the worker’s continuation value. Note that the drift term and the volatility
term of 𝐹(𝑊𝑡) correspond to those in condition (5), which has already incorporated the incentive-
compatibility constraint.

To completely characterize the optimal contract, we still need to impose proper boundary con-
ditions for the HJB equation. The lower bound is simply the outside option for a worker, 𝑊𝑢 , as
the worker can always leave the contract for free. The upper bound 𝑊𝑟 is the expected utility for
a retired worker and it is finite because firms cannot promise infinite utility to workers. When the
promised utility is too high, it will cost a firm too much to motivate the worker due to the income
effect. At such point, the firm is better off by retiring the worker. It turns out that the upper bound
is absorbing and the lower bound is reflective. We now elaborate how the boundary conditions are
determined.

Absorbing upper bound. The optimal contract features an absorbing upper bound where workers
get retired and can publicly exert zero effort. Retired workers are still considered employed since
they are still being paid by firms but the relationship will end when the exogenous separation shock
hits the pair. Under the retirement plan, retired workers will obtain a constant consumption stream
𝐶𝑅(𝑊) over time and firms will obtain negative expected payoff 𝐹𝑅(𝑊), where6

𝐶𝑅(𝑊) = 𝑢−1
[
𝑊 − 𝜆𝑥

𝑟
(𝑊𝑢 −𝑊)

]
, and 𝐹𝑅 (𝑊) = − 𝐶𝑅

𝑟 + 𝜆𝑥
.

6The derivation is in Appendix B.2.
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Therefore, at the upper bound 𝑊𝑟 , the value matching and smooth pasting conditions must be
satisfied to make the employment plan consistent with the retirement plan,

𝐹 (𝑊𝑟) = 𝐹𝑅 (𝑊𝑟) , and 𝐹′ (𝑊𝑟) = 𝐹′𝑅 (𝑊𝑟) . (7)

Reflective lower bound. We follow Grochulski and Zhang (2019) to allow a flexible temporary
suspension, which implies that the optimal contract features a reflective lower bound.7 Under a
temporary suspension plan, workers are allowed to temporarily put in zero effort and to return back
to work when it is a favorable option for both parties.

We delegate the formal analysis to Appendix B.5, and briefly describe the dynamics here. The
state space can be divided into two regions: one is low-effort region where workers are temporarily
suspended (𝐴 = 0); the other is high-effort region where workers put positive effort (𝐴 > 0). Denote
the splicing point where the low-effort region switches to high-effort region as 𝑊𝑠 . Once 𝑊𝑡 leaves
[𝑊𝑢 ,𝑊𝑠), it reflects off 𝑊𝑠 and remains in [𝑊𝑠 ,𝑊𝑟]. The optimal contract is obtained when 𝑊𝑠 is
set as low as possible because a larger support [𝑊𝑠 ,𝑊𝑟] could sustain positive effort for a longer
period. With a larger high-effort support, the volatility in the continuation value will not drive 𝑊𝑡

to collide with 𝑊𝑠 as quickly. Therefore, the low-effort region will degenerate into one point at 𝑊𝑢 .
To guarantee the consistency of the contract over the entire contracting space, the smooth pasting
condition must be satisfied at point 𝑊𝑢

𝐹′(𝑊𝑢) =
𝐹(𝑊𝑢) − 𝐹𝑅(𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
)

𝑊𝑢 − 𝜆𝑥𝑊𝑢
𝑟+𝜆𝑥

(8)

where the right-hand side represents the slope of the profit function in the temporary suspension
region.8

Optimal contract. The optimal contract then solves the differential equation (6), together with the
boundary conditions (7) and (8). The first-order conditions with respect to the compensation and
effort schedule lead to

𝑧𝑡 + 𝑟𝐹′ (𝑊𝑡)𝜙′ (𝐴𝑡) + 𝑟2𝐹′′ (𝑊𝑡)
(𝜎
𝑧

)2
𝜙′ (𝐴𝑡)𝜙′′ (𝐴𝑡) = 0,

− 1 − 𝑟𝐹′ (𝑊𝑡) 𝑢′ (𝐶𝑡) = 0.

7This is in contrast with Sannikov (2008) where the contract is terminated at 𝑊𝑢 and the lower bound becomes an
absorbing state.

8See Figure 12 in Appendix B.5 for a virtual explanation.
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The results are reminiscences of those obtained in Sannikov (2008), except that in our model, 𝑊𝑢

is an endogenous object in equilibrium and firms are allowed to temporarily suspend a worker.
Figure 1 illustrates that the optimal contract features a “back-loading” consumption plan and hard-
to-motivate senior workers due to the income effect.

Figure 1: Optimal Compensation and Effort Schedules

Notes: The left panel shows that the compensation schedule is backward-loading. The right panel shows that the effort
schedule increases with 𝑊 near the lower bound and then decreases with 𝑊 , suggesting that senior workers are difficult
to motivate.

At individual level, the compensation profile over tenure directly depends on the evolution of
the promised utility; at the aggregate level, the total output is shaped by the distribution of workers
over the utility space, which indirectly depends on the evolution of the promised utility. To pin
down 𝑊𝑡 , we now move to the general equilibrium that determines which submarket 𝑊0 is chosen
and the value of being unemployed 𝑊𝑢 .

2.3 Competitive search market

In this section, we embed the contract problem into a general equilibrium framework. We assume
labor search is directed as in Moen (1997) and characterize the optimal decisions for vacant firms
and unemployed workers. The outside option and the initial promised utility that were taken as
given in Section 2.2 will now be endogenously determined.

Vacant firms. Observing a menu of submarkets labeled by 𝑊0, firms simultaneously choose
whether to create vacancies and where to locate them. In equilibrium, only a subset of submarkets
open. For those submarkets that do open, the firm’s free entry condition is satisfied in the sense that

15



the firm’s expected profit of posting a job equals its posting cost 𝑘,

𝑘 = 𝑞 (𝜃 (𝑊0)) 𝐹 (𝑊0) . (9)

The firm’s expected profit of creating a vacancy is higher if the job filling rate 𝑞 (𝜃 (𝑊0)) is larger or
the expected value of hiring a worker 𝐹 (𝑊0) is higher. We can rewrite (9) as

𝜃 (𝑊0) = 𝑞−1
(

𝑘
𝐹(𝑊0)

)
. (10)

This equation defines a unique relationship between the initial promised utility and the labor market
tightness. If a firm’s expected value of hiring decreases, it will be less willing to post a job, and
collectively this will tighten the labor market and make the hiring process slower. This connects the
properties of the optimal contract with the labor market outcomes.

Unemployed workers. We assume that all unemployed workers participate in job searching. Un-
employed workers take the menu of submarket as given and optimally submit their applications. If
an unemployed worker successfully finds a job, she will sign a new contract that delivers her the
lifetime utility 𝑊0. Otherwise, she remains unemployed and obtains an unemployment benefit flow
𝑏. Anticipating the relationship between the market tightness and promised utility (10), the value
of being unemployed is given by the following lemma.

Lemma 2.2. For an unemployed worker, the value function 𝑊𝑢 and the directed search decision 𝑊0 solve the
following recursive problem:

𝑟𝑊𝑢 = max
𝑊0∈𝒲

𝑟𝑢 (𝑏) + 𝑝

[
𝑞−1

(
𝑘

𝐹(𝑊0)
)]

(𝑊0 −𝑊𝑢) . (11)

Proof. See Appendix B.7. �

Equilibrium. We adopt the recursive equilibrium concept à la Menzio and Shi (2010). Crucially,
where the unemployment rate in an equilibrium does not depend on the distribution of workers
over their employment status and promised utility level. This property is particularly useful when
there is aggregate uncertainty as in Section 5.

Definition 2.1. A block recursive equilibrium consists of a market tightness function 𝜃 : 𝒲 → R+, a
utility function of unemployed workers 𝑊𝑢 , a promised utility function of employed workers 𝑊 ∈ [𝑊𝑢 ,𝑊𝑟],
an initially promised utility function for newly hired workers 𝑊0 ∈ [𝑊𝑢 ,𝑊𝑟], and a firm’s value function
𝐹 : 𝒲 → R such that the following hold:
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(i) The employed worker’s promised utility 𝑊 follows (5).

(ii) The operating firm’s value function 𝐹(𝑊) solves (6), (7) and (8).

(iii) Given the market tightness function 𝜃(𝑊0), the vacant firm’s choice of entering market 𝑊0 satisfies the
free entry condition (9).

(iv) Given the market tightness function 𝜃(𝑊0), the unemployed worker’s utility function𝑊𝑢 and the choice
of market to direct search 𝑊0 satisfy condition (11).

Despite the presence of the dynamic contract, the model is still tractable. Thanks to the
continuous-time environment, solving the general equilibrium boils down to solving a finite number
of differential equations. The computational details are explained in Appendix D.

(a)

(b)

Figure 2: Endogenizing outside option 𝑊𝑢 and initially promised utility 𝑊0

Notes: Panel B shows that the firm profit function is hump-shaped with moral hazard problem. Panel A shows that the
feasibility constraint for workers is given by the blue curve (the vacancies that firms would like to create). The job finding
rate drops to zero when the firm profit drops to zero or below. The red curve represents workers’ indifference curve in job
searching. The tangent point 𝑊0 determines the submarket that unemployed workers will collectively visit. The choice
of 𝑊0 in turn settles the promised value 𝑊𝑢 for the unemployed.

17



As mentioned earlier, the values of𝑊0 and𝑊𝑢 lie at the interaction between optimal contract and
the labor market equilibrium. How are these objects determined in equilibrium? Given a particular
value of𝑊𝑢 , a firm can evaluate their profits by posting jobs with different promised utilities. Figure
2b illustrates that the profit function is hump-shaped. It is increasing in a very short interval at left
end, where the worker and the firm’s incentives are aligned. The profit quickly declines as promised
utility increases as the wage bill accumulates. This profit function in turn implies a locus of market
tightness and promised utility through the free entry condition (9), which is depicted by the blue
solid line in Figure 2a. Finally, workers find their ideal submarket 𝑊0 to enter, which correspond to
the tangent point between their indifference curve and the feasibility curve.

In equilibrium, the value of 𝑊𝑢 has to be consistent with workers’ expectation, satisfying condi-
tion (11). This amounts to a fixed-point problem. All the other equilibrium objects can be derived
according to the optimal contract once 𝑊𝑢 and 𝑊0 are determined.

3. Parameterization

In this section, we describe the parameterization strategy in order to quantify the model. Most of
the parameters can be calibrated with standard moments on labor market flows, and we explain in
details how the parameters related to moral hazard problem are determined.

3.1 Calibration

Table 1 summarizes the calibrated parameter values. The model period is a quarter, and the interest
rate 𝑟 for workers and firms is set to be 0.012 so that the annual rate is 4%. The arrival intensity of
the separation shock 𝜆𝑥 is set to match the average job duration at 2.5 years. We choose a Cobb-
Douglas matching function, 𝑚(𝑣, 𝑢) = 𝜉𝑢𝛼𝜈1−𝛼. We set the vacancy cost 𝑘 so that the steady-state
labor market tightness is normalized to be 1. The matching efficiency 𝜉 is set to match the monthly
job finding rate at 0.45, and the matching elasticity 𝛼 is estimated using detrended data on the job
finding rate and the 𝑣 − 𝑢 ratio following Shimer (2005). The unemployment benefit is set to match
the replacement ratio at 20%.

Turn to workers’ preferences. The utility function for consumption takes a standard CRRA form,
𝑢(𝐶) = 𝐶1−𝜂−1

1−𝜂 . The risk aversion 𝜂 is set to be 0.5, as in Sannikov (2008). Note that this value is
lower than those commonly used in standard DSGE literature. This is because without endogenous
capital accumulation, labor earnings are the only source of income and a value for 𝜂 larger than one
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implies too strong income effects. In canonical labor search models, with 𝜂 > 1, the employment
would be counter-cyclical and it is common to specify linear utility function. We set 𝜂 = 0.5 to
ensure an empirically plausible income effect on labor supply.

In terms of the disutility of effort, we adopt a quadratic functional form, 𝜙(𝐴) = 𝜒1(𝐴2 + 𝜒2𝐴).
We set 𝜒1 so that the aggregate labor supply is normalized to one,

∫
𝒲 𝐴(𝑊)𝑔(𝑊)𝑑𝑊 = 1. The

coefficient of the linear term 𝜒2 is related to the amount of time workers spend on the temporary
suspension stage when the promised utility approaching its reflective lower bound. We set 𝜒2 = 0.5
so that workers spend negligible amount of time around this corner.

Parameter Description First Best Baseline Target

𝑟 discount rate 0.012 0.012 4% annual return
𝜆𝑥 separation rate 0.1 0.1 job duration 2.5 yrs
𝜉 matching efficiency 1.35 1.35 monthly job finding rate 0.45
𝛼 matching elasticity 0.72 0.72 Shimer (2005)
𝜂 risk aversion 0.5 0.5 Sannikov (2008)
𝑧 aggregate productivity 1 1 normalization

𝑏 unemployment benefit 0.2 0.2 replacement ratio 𝑏
𝑐 = 20%

𝑘 vacancy posting cost 0.203 0.0053 market tightness 𝜃 = 1
𝜒1 effort disutility 0.183 0.063 aggregate output equals 1
𝜒2 effort disutility 0.5 0.5 —

Table 1: Parameters used for benchmark calibration

3.2 Estimating the variance of idiosyncratic factors

The key parameter in our calibration is the variance of idiosyncratic factors. It governs the underlying
information friction faced by firms. Our baseline calibration strategy is to match the residual
of performance pay in the PSID. The variance of the idiosyncratic factor is recovered by indirect
inference: we choose the parameter such that when running the same regression using model
generated data, the residual is the same as that using PSID performance pay data. As a benchmark,
we use the residual of performance pay as the target, and as a robustness check, we use regular
wage residual to perform the estimation.
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Sample selection. We use the PSID data to conduct the estimation. The sample is from 1994 to
2019.9 The PSID data are at a yearly frequency from 1994 to 1996 and at a biannual frequency
from 1997 to 2019. This gives us 15 years of unbalanced panel data. The sample contains 15,571
individuals who contribute to a total of 62,950 person-year observations. Furthermore, the sample
contains 34,401 worker-job matches. If we define a performance pay job as job that pays performance
pay at least once in the whole employment span, then the sample contains 5,614 performance pay
jobs that contribute to a total of 14,692 performance pay job-year observations.

Estimation strategy. To infer the variance of idiosyncratic factor 𝜎2, we use the volatility of perfor-
mance pay conditional on observed workers’ characteristics. The identification assumption is that
firms do not possess more information than econometricians, and the only unobservable factor that
causes the variance in the residual of performance pay is the variance of the idiosyncratic factor. We
set 𝜎2 so that the volatility of model implied wage residual matches the volatility of performance
pay residual.

We focus on the performance pay instead of the regular wage as the former is directly linked
to firms’ need to incentivise workers. As argued in Lemieux, MacLeod, and Parent (2009) and
Doligalski, Ndiaye, and Werquin (2020), performance pay is a “cleaner” identifier for estimating the
variance of idiosyncratic factor because performance pay is used directly to motivate the worker to
exert effort and can also immediately reflect the worker’s performance. If we instead use regular
wage residual to estimate the variance of idiosyncratic factors, then one reasonable critique is that
firms have a larger information set than econometricians. Using the performance pay residual can
partially resolve such concern. Nevertheless, we experiment the specifications using regular wage
residual in Appendix E.2, and the results are similar qualitatively.

We define a performance pay job as a job that pays performance pay at least once during
the course of employment. Hourly performance pay is computed by dividing annual income
from bonuses, tips, and commission fees (adjusted by CPI-U) by annual working hours. The
performance pay residual is the residual part of hourly performance pay after controlling for worker-
level observable characteristics, as well as worker-firm, match-level, time-invariant unobservable
factors, year-specific aggregate unobservable factors, industry-cross-occupation-level unobservable
factors and fixed effects. Built on the convention in Heathcote, Perri, and Violante (2010) and the

9The PSID began in 1968, but it only started to report the bonuses, tips, and commission income of the family head in
1994.
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“industry standard” Mincer regression, we set the following regression specification.

performance𝑖 , 𝑗 ,𝑡 = 𝛽𝑒𝑑𝑢 edu𝑖 + 𝛽𝑒𝑥𝑝𝑟 𝐿(expr𝑖 ,𝑡) + 𝛽𝑡𝑒𝑛𝑢 𝐿(tenu𝑖 , 𝑗 ,𝑡) + 𝛽𝑡 D𝑡 + 𝛽𝑖𝑛𝑑 D𝑖𝑛𝑑 + 𝛽𝑜𝑐𝑐 D𝑜𝑐𝑐

+ 𝛽𝑖, 𝑗 D𝑖, 𝑗 + 𝜀𝑖 , 𝑗 ,𝑡 .

In this regression, performance𝑖, 𝑗 ,𝑡 is the asinh hourly real performance pay of individual 𝑖 working
job 𝑗 at time 𝑡. We run the regression on year dummies D𝑡 , year of education edu𝑖 , a cubic polynomial
of potential experience expr𝑖,𝑡 , a quadratic polynomial of tenure tenu𝑖 , 𝑗 ,𝑡 , industry dummies D𝑖𝑛𝑑,
occupation dummies D𝑜𝑐𝑐 , and finally, worker-job dummies D𝑖 , 𝑗 to tease out the worker-job-level
time-invariant component from the residual.

Then 𝜀𝑖, 𝑗 ,𝑡 is the residual in performance pay. std
[
𝜀𝑖, 𝑗

]
is the data counterpart of the model-

implied variance of the hourly compensation, std
[
asinh

( 𝐶
𝐴

) ]
.10 We also explore various specifica-

tions and the regression results which are summarized in Table 2. The variance of the idiosyncratic
factor is chosen to match the estimation results. We use the regression results in Column (6) to
calibrate the baseline model, and it indirectly infers 𝜎 to be 7.6.

4. Steady-state analysis

In this section, we explore the effects of moral hazard on labor market dynamics at the steady state.
At the aggregate level, we show that when the moral hazard problem is present, the elasticity of
the unemployment rate with respect to aggregate productivity is amplified and the wage dispersion
becomes countery-cyclical. At the individual level, we show the individual wage dynamics display
a wage scarring effect. Most of the insights developed in this section can be carried to the model
with aggregate uncertainty.

4.1 Unemployment rate and the productivity shock

Unemployment Elasticity. How does unemployment rate respond to a change of the aggregate
productivity in the long run? We compare the steady-state unemployment rate with different levels
of aggregate productivity in the economies with and without the moral hazard problem.

10We use asinh function instead of log function to take away unit for dependent variable. asinh has a nice shape similar
to log and 𝑎𝑠𝑖𝑛ℎ(0) = 0.
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Dependent asinh(performance)
Method OLS OLS FE FE FE FE

Regressors (1) (2) (3) (4) (5) (6)

i.worker
i.match
i.year

i.industry
i.occupation

i.y# i.ind# i.occ

Observations 14496 14332 13103 12885 12139 11897
Std of residual .675 .648 .533 .510 .513 .487

1 To match with the model, we use asinh hourly real performance pay: PSID pro-
vides yearly nominal performance pay, and we deflate it using CPI-U. Since we use
the real performance pay, there’s no need to control the time variable to detrend
the performance pay.

2 Controls that we use in the regressions but omit in this report table include:
worker’s education years edu, a cubic polynomial of worker’s potential experience
in the labor market expr, expr2, expr3, a quadratic polynomial of worker’s tenure
year in current job tenu, tenu2.

Table 2: Regression table of performance pay residual

0.95 1 1.05

6%

7%

8%

9%

Figure 3: The elasticity of the unemployment rate with respect to 𝑧

Notes: The inverse relationship of unemployment rate and the productivity is steeper with moral hazard problem than
without. It suggests that the unemployment rate is more elastic to the change in aggregate productivity when the moral
hazard problem is taken into account.
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The red dashed line in figure 3 plots how the unemployment rate 𝑢 changes with aggregate
productivity 𝑧 in the first-best economy without moral hazard. The elasticity of unemployment
with respect to productivity is quite low, which resembles the findings in the labor search literature
Shimer (2005).

In contrast, the blue solid line plots the changes in unemployment in the baseline economy.
Compared with the first-best economy, the unemployment rate is much more responsive to changes
in the productivity shock. The reason for this additional responsiveness is that firms are more
responsive in its posting behavior. Recall that 𝑑𝑌𝑡 = 𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 . Firms can only observe the
output process𝑌𝑡 and but cannot observe the idiosyncratic factor. For a target 𝐴𝑡 , a higher aggregate
productivity shock 𝑧 will help firms to form more accurate forecast about 𝐴𝑡 as the idiosyncratic
factor become relatively less important in shaping the output. This reduces worker’s power in
charging the information rent, leaving the moral hazard problem less severe. This encourages firms
to post more jobs, which we explain in more details below.

Decomposition: Efficiency v.s. Incentive. To see how the firm’s job posting incentive is modified,
we revisit the HJB equations that determine the firm’s profit in first-best economy and in the moral
hazard economy:

First best: (𝑟 + 𝜆𝑥) 𝐹(𝑊𝑡) = max
𝐴

z𝐴𝑡 − 𝐶𝑡︸    ︷︷    ︸
standard efficiency gain

Moral hazard: (𝑟 + 𝜆𝑥) 𝐹 (𝑊𝑡) = max
𝐴,𝐶

z𝐴𝑡 − 𝐶𝑡︸    ︷︷    ︸
standard efficiency gain

+ 𝐹′ (𝑊𝑡)
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)

) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥
]

+ 1
2𝐹

′′ (𝑊𝑡)
(
𝑟𝜙′ (𝐴𝑡) 𝜎

z

)2

︸                        ︷︷                        ︸
additional incentive gain

Note that 𝑧 appears in both the flow term and the volatility term of the HJB equation for the
moral hazard economy, while 𝑧 only enters the output flow term of HJB equation for the first-best
economy. Ceteris paribus, when there is a permanent increase in 𝑧, the output flow will increase
due to the substitution effect, and this is the standard efficiency gain. Furthermore, spending on
motivating the worker will decrease due to a looser incentive constraint, which we label as the
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Figure 4: The response of a firm’s profit to a change in 𝑧

Notes: We use these diagrams to show why vacancy posting is more responsive to productivity shocks when there exists
moral hazard problem. Consider there is a positive productivity shock. The dashed blue curves are firm’s profits before
the rise of productivity. The efficiency gain from higher productivity moves profit functions to solid blue curves. However,
with the moral hazard problem, higher 𝑧 also relaxes the incentive constraints and reduces firms’ costs in incentivising
workers. This additional incentive gain brings firm’s profit to the red curve and encourages firms to post more vacancies.

additional incentive gain for firms.11

In Figure 4a, the blue dashed line is the original profit function for a firm. When 𝑧 permanently
increases by 10%, the firm’s profit will shift up to the blue solid line if we only consider the standard
efficiency gain. When we also consider the incentive gain for the firm, the profit curve moves further
up to the red line. In contrast, in figure 4b without moral hazard, when 𝑧 increases by 10%, the
profit curve only shifts from the dotted blue line to the solid blue line, and the size of the shift is due
entirely to the standard efficiency gain.

This partial equilibrium result for the firm’s profit change carries over to the firm’s willingness
to post jobs. As a result, the labor market is less tight and job finding rate for unemployed workers
is higher. In steady state, the flow of workers entering the unemployment pool 𝜆𝑥𝑑𝑡 (1 − 𝑢) is
equal to the flow of unemployed workers exiting the pool

(
𝑝𝑑𝑡

)
𝑢, and the steady state measure of

unemployed workers is given by

𝑢 =
𝜆𝑥

𝜆𝑥 + 𝑝
(
𝜃(𝑊 ∗

0 )
) .

A higher job finding rate 𝑝
(
𝜃

(
𝑊 ∗

0
) )

implies a lower unemployment rate.

To illustrate how this incentive provision motive appears in general equilibrium, Figure 5 de-

11𝐹′′(·) < 0 is formally proved in Sannikov (2008), section 7.4, lemma 1.
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composes the unemployment rate changes in the baseline economy into two parts: efficiency gain
and incentive gain. The red curve represents the efficiency gain when the incentive gain is muted,
and the blue curve captures the composite effect of both the efficiency gain and the incentive gain.

0.95 1 1.05

6%

7%

8%

9%

Figure 5: Decomposing the unemployment rate elasticity with respect to 𝑧

Notes: With the presence of moral hazard problem, the inverse relationship between unemployment and productivity
demonstrated in Figure 3 is due to two effects: efficiency gain and incentive gain. The efficiency gain is reflected by the
slope of red curve and the incentive gain is reflected by the difference in slopes of blue curve and red curve.

Role of 𝜚 . As discussed in section 2.1, it is possible that the aggregate productivity can also scale
the effect of noise on output as specified by equation (1). As a robustness check, figure 6 shows
that unemployment is more elastic with respect to aggregate productivity as 𝜚 decreases. When 𝜚

approaches to 0, the elasticity of unemployment corresponds to our baseline model. We can expect
that as 𝜚 grows, the moral hazard has less effect on generating elastic labor market response and
less in favor of our claims. Whereas when 𝜚 decreases, the moral hazard problem has a larger bite
in creating more elastic employment.

4.2 Wage dispersion and the productivity shock

Next, we examine how wage dispersion responds to the change in aggregate productivity in the
presence of the moral hazard effect. We claim that even without ex ante worker heterogeneity, the
information friction alone could create counter-cyclical wage dispersion. Recall that the incentive
constraint for the worker is

𝑧Ψ𝑏,𝑡 ≥ 𝜙′ (𝐴𝑡)
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Figure 6: Elasticity of the unemployment rate with respect to 𝑧

When the aggregate productivity 𝑧 increases, for a fixed target effort plan 𝐴𝑡 , the incentive constraint
becomes more relaxed. To reduce the cost of exposing workers to the idiosyncratic factor, a firm will
choose a lower level of exposure to motivate the worker. Put it differently, with higher productivity,
the more relaxed incentive constraint implies that the firm has less need to expose the worker to risk.
Consequently, compensation is less volatile over time and there is less cross-sectional dispersion.

This logic appears in the evolving process of the worker’s promised utility.

𝑑𝑊𝑡 =
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)

) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥
]
𝑑𝑡 + 𝑟

𝜙′ (𝐴𝑡)
𝑧

𝜎𝑑𝐵𝑡

Aggregate productivity 𝑧 enters the volatility term of the stochastic differential equation. The higher
𝑧 is, the less volatile the promised utility is.

Wage dispersion is measured by the standard deviation of cross-sectional wages. Figure 7a shows
that the distribution of promised utility is less fat-tailed when aggregate productivity is higher. The
blue solid curve is the worker’s distribution when setting 𝑧 = 1, and the red dotted curve is that
when setting 𝑧 to be 10% higher. Since 𝐶(𝑊) and 𝐴(𝑊) are nearly monotonic transformations of
promised utility, the wage dispersion defined by std

[
log 𝐶

𝐴

]
inherits the pattern of the distribution

of promised utility. Figure 7b shows that wage dispersion will decrease as aggregate productivity
rises. The elasticity of wage dispersion with respect to aggregate productivity is −5.34 near the
steady state (𝑧 = 1).
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(a) Promised utility distribution: translated
to same left end
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(b) Countercyclical wage dispersion

Figure 7: Wage dispersion

Notes: Panel A shows that the promised utility for workers is more concentrated if the productivity is higher, as the red
curve is less fat-tailed than the blue curve. Panel B shows that the wage dispersion is negatively correlated with the
productivity.

4.3 Individual wage dynamics

Now we turn to the individual wage dynamics. We document two features of the models that are
consistent with the empirical regularities: workers will suffer a wage loss after replacement (a wage
scaring effect) and a right-skewed wage distribution.

The baseline model with moral hazard displays a wage scarring effect, which is in contrast with
the constant compensation pattern in the frictionless economy. When workers lose their current
job and are then reemployed, the wage plummets. The first-year wage compared with the most
recent payment from the last job will decrease by 54% according to our simulated data. The reason
is that the worker’s wage is back-loaded and it takes time to accumulate reputation.12 Figure 8a
visualizes the wage scarring effect, which is represented by the gap between the starting wage
for new hires and the average wage for all employed workers. Jacobson et al. (1993), Couch and
Placzek (2010), and Barnette and Michaud (2011) document that the wage decreases by 15% – 40%
after job displacement. Our model-generated result lies a bit beyond the upper end of the range of
estimates that these empirical papers report. A potential reason is that we assume that workers lose
all reputation from past employment once removed from their current jobs and that workers have
to build their reputation from scratch. However, in reality, workers can partially reveal their past

12Here “reputation” is a loosely defined term, and its model correspondence is a worker’s promised utility.
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(a) Wage scarring effect (b) Distribution of promised utility

Figure 8: Individual wage dynamics

Notes: Panel A shows that when the separation shock hits, the worker will have to find another job and the starting wage
is 54% less than the original job. Panel B illustrates the stationary distribution of worker’s promised utility. The promised
utility also drops from 𝑊 to 𝑊0 when the worker changes job.

performance with previous employers using resumes or recommendation letters, which smooths
the job transition for workers.

The individual wage dynamics also imply that most workers are working with low promised
utility. Figure 8b illustrates the stationary distribution of worker’s promised utility and it is right-
skewed. Once workers reach the lower bound, they will linger in the region with relatively low
payment. Our model-generated data show that it takes workers 8.7 quarters to return to average
wage after reaching the lower bound. The wage scarring effect is also reflected by the gap between
average promised utility 𝑊 and the initial promised utility 𝑊0 in Figure 8b. The wage scarring
effect helps to account for a Gini coefficient of 0.22 for the model-generated data, though there is no
ex-ante heterogeneity among workers.

5. Dynamic model analysis

In this section, we extend the analysis to allow uncertainty on the aggregate productivity. We
quantify the role of moral hazard in amplifying unemployment volatility and generating counter-
cyclical wage dispersion.
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5.1 Model with aggregate uncertainty

The dynamic model is quite similar to the model in steady state except that we now allow aggregate
productivity 𝑧 to vary over time. We assume that 𝑧𝑡 is the aggregate productivity shock publicly
known to all and it is a regime-switching shock that takes two possible values, 𝑧𝑡 ∈ {𝑧𝐿 , 𝑧𝐻}. The
regime switches when the productivity shock 𝑁𝑧,𝑡 arrives with a Markov transition rate 𝜆𝑧 (𝑧𝑡). The
transition matrix is thus given by [

1 − 𝜆𝑧 (𝑧𝐿) 𝜆𝑧 (𝑧𝐿)
𝜆𝑧 (𝑧𝐻) 1 − 𝜆𝑧 (𝑧𝐻)

]
.

We use 𝑧𝑐 to denote the complement state to the current state 𝑧. The aggregate productivity shock
creates an additional state variable when we solve the model. We briefly describe the modifications
of the model elements while leaving the full detail of the model to Appendix C.

Employed worker’s problem. Now, the worker’s promised utility is also exposed to the aggregate
productivity shock 𝑑𝑁𝑧,𝑡 , and the exposure process is Ψ𝑧,𝑡 . The worker’s promised utility follows a
stochastic process:

𝑑𝑊𝑡 =
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶(𝑊𝑡)) + 𝜙 (𝐴(𝑊𝑡))) ] 𝑑𝑡 +Ψ𝑏,𝑡𝜎𝑑𝐵𝑡 +Ψ𝑥,𝑡 (𝑑𝑁𝑥,𝑡 − 𝜆𝑥𝑑𝑡) +Ψ𝑧,𝑡 (𝑑𝑁𝑧,𝑡 − 𝜆𝑧 (𝑧𝑡) 𝑑𝑡)

Operating firm’s problem. We use 𝐹(𝑊, 𝑧) and 𝐹(𝑊, 𝑧𝑐) to characterize firm’s profit under two
aggregate states. An operating firm’s recursive problem now can be summarized by a system of
two HJB equations, where compared with the steady state HJB equation, two elements related to
the change in the aggregate productivity shock 𝑧 are added: (a) the immediate effect on the firm’s
profit 𝜆𝑧(𝑧) [𝐹(𝑊 +Ψ𝑧 , 𝑧𝑐) − 𝐹(𝑊, 𝑧)], (b) the indirect effect that shifts a worker’s promised utility
and through the income effect alters the firm’s profit.

(𝑟 + 𝜆𝑧(𝑧) + 𝜆𝑥) 𝐹 (𝑊, 𝑧) = max
𝐴,𝐶,Ψ𝑧

𝑧𝐴 − 𝐶 + 𝜆𝑧(𝑧)𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐)

+ 𝐹𝑊 (𝑊, 𝑧) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊) − 𝜆𝑧 (𝑧)Ψ𝑧

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧)
(
𝑟𝜙′ (𝐴)

𝑧

)2

𝜎2

Vacant firm’s problem. The expected payoff from hiring a new worker is now related to the
aggregate state, making a firm’s posting decision also vary with the aggregate state. The free entry
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condition for the firm is given by

𝑘 = 𝑞 (𝜃(𝑧)) 𝐹 (𝑊0(𝑧), 𝑧) = 𝜉𝜃(𝑧)−𝛼𝐹 (𝑊0(𝑧), 𝑧) .

Unemployed worker’s problem. For unemployed workers, the search decision will also be altered
by the aggregate productivity shock. Their value function comes from the utility gain from unem-
ployment benefits, the change in utility from the change in aggregate state, and the expected search
value.

(𝑟 + 𝜆𝑧)𝑊𝑢(𝑧) = max
𝑊0(𝑧)∈𝒲

𝑟𝑢(𝑏) + 𝜆𝑧𝑊𝑢(𝑧𝑐) + 𝑝 (𝜃 (𝑊0(𝑧), 𝑧)) [𝑊0(𝑧) −𝑊𝑢(𝑧)]

Block recursive equilibrium. In block recursive equilibrium, the worker’s value and policy func-
tions depend on the aggregate state of the economy only through the aggregate productivity 𝑧 but
not through the distribution of workers across different employment states. Without this refinement,
firms and workers should at least keep track of the unemployment rate.13 For this reason, our model
can restrict the state variables to a total number of two (𝑊, 𝑧) and is still tractable in the dynamic
environment.

Dynamic model calibration. We have four additional parameters to calibrate, i.e., 𝑧𝐿 , 𝑧𝐻 ,𝜆𝑧 (𝑧𝐿),
𝜆𝑧 (𝑧𝐻). The calibration strategy is to match the moments of quarterly data on labor productivity
(output per hour) and the frequency of recession indicator. We assume that aggregate productivity’s
deviation from the steady state is symmetric and the percentage deviation is Δ𝑧. Following the
estimation in Shimer (2005), std[Δ𝑧] = 0.02, E[Δ𝑧𝑡Δ𝑧𝑡+1] = 0.878.14 Furthermore, the recession
indicator suggests that the probability of low aggregate productivity is𝜋Δ𝑧𝐿 = 0.141. These moments
indicate the values of our four parameters: Δ𝑧𝐿 = −2.87%, Δ𝑧𝐻 = 2.87%, 𝜆𝑧 (𝑧𝐿) = 0.105, 𝜆𝑧 (𝑧𝐻) =
0.017. A detailed discussion on the calibration of the aggregate productivity process is in Appendix
E.1.

13Since we do not consider on-the-job search in our model, the recursive equilibrium should only additionally consist
of the measure of employed workers 𝑢𝑡 but not the whole distribution of employed workers 𝐺(𝑊). Nevertheless, Menzio
and Shi (2011) formally show in Theorem 2 that block recursive equilibrium exists and is unique and achieves the social
optimum. They also show there is no loss in generality in focusing on the block recursive equilibrium because all equilibria
are block recursive.

14The data are from the U.S. Bureau of Labor Statistics. The labor productivity data are measured as the percentage
change from the previous quarter at an annual rate, and the quarterly percentage change is approximately the annual
percentage change divided by four. To eliminate the unit difference, we take the log of the labor productivity level data
and obtain the percentage change for each quarter compared with the base year (1947 Q1). We also detrend the data by
applying the HP filter 1600 on the time series data.
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5.2 Unemployment volatility

Table 3 compares the unemployment volatility in the dynamic model with and without the moral
hazard problem. The standard deviation of the unemployment rate in the information frictionless
economy is quite low (0.016), while our baseline model brings the model much closer to the data
(0.137) which amounts to roughly 70% of the unemployment rate volatility observed in the data.

Moments std(𝑧) autocorr(𝑧) std(𝑢)
Data 0.02 0.88 0.190
No moral hazard 0.02 0.88 0.016
Benchmark 0.02 0.88 0.137

Table 3: Unemployment volatility

Our result complements the existing literature on the Shimer’s puzzle (Shimer, 2005). Previous
studies have resorted to a high replacement ratio (Hagedorn and Manovskii, 2008) or rigid wages
(Hall, 2005; Gertler and Trigari, 2009) in generating higher unemployment volatility. Our model takes
a different approach and endogenously creates higher unemployment volatility in the presence of
asymmetric information frictions. What drives this result is the counter-cyclical information rent, as
we elaborated in the steady-state analysis in Section 4.1. Compared to the first-best economy, firms
in the moral hazard economy are more willing to post jobs during a business upturn because they
enjoy an additional profit gain from spending less on incentivizing workers.

5.3 Wage dispersion across business cycles

In terms of the cyclical property of the wage dispersion, the model’s simulation results in Table
4 accord well with the empirical findings, displaying a counter-cyclical pattern. The correlation
between output and wage dispersion is −0.34 in our model. The wage dispersion conditional
on low aggregate productivity realization (0.69) is larger than that conditional on high aggregate
productivity realization (0.66). These results are consistent with the findings in Storesletten, Telmer,
and Yaron (2004) who empirically document that wage dispersion is higher in contraction periods
than that in expansion periods.

In our economy, the cross-sectional dispersion of underlying idiosyncratic shocks is independent
of the aggregate shock. The counter-cyclical wage dispersion is instead driven by the counter-cyclical
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Moments Baseline

corr(GDP, wage disp.) -0.34

wage disp.|𝑧𝐿 0.69

wage disp.|𝑧𝐻 0.66

autocorr(wage disp.) 0.76

Table 4: Wage dispersion

information rent as discussed in Section 4.2. In business downturns, the idiosyncratic shocks loom
larger than that of the aggregate productivity shock, which makes firm more exposed to the moral
hazard problem. In response, firms optimally provide less insurance for workers, leaving wage
compensation more responsive to workers’ individual shocks. At the aggregate level, the wage
dispersion displays a counter-cyclical pattern.

Quantitatively, such channel is not designed to account for the entire observed cyclicality in wage
dispersion. The counter-cyclical wage dispersion is likely to be influenced by changes in labor force
composition and heterogeneous exposures to aggregate output (Patterson, 2023; Guvenen, Ozkan,
and Song, 2014). Nevertheless, our theory complements the existing theory in rationalizing the
cross-sectional pattern without attributing to exogenous variations in underlying shocks.

6. Policy implications of the model

In this section we will extend our discussion to the policy implications. We are especially interested
in the unemployment insurance policy and the minimum wage policy, as these two policies are
frequently employed by the government to improve the welfare for the bottom workers. But at the
same time, these two policy tools are also likely to alter workers’ incentives. We will discuss the
interplay between the moral hazard problem and labor market policies.

6.1 Unemployment insurance

In this part we will study the interaction between moral hazard problem and unemployment in-
surance policy. Even without the moral hazard problem, when workers are guaranteed a generous
unemployment insurance plan, the general equilibrium effect indicates that this unemployment
benefit encourages workers to wait longer for better jobs and thus that the unemployment rate
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will rise. However, when we consider the moral hazard problem, as in our baseline model, more
generous unemployment insurance also undermines worker incentives: it is more difficult for firms
to motivate workers since they become less afraid of being suspended. Figure 9a illustrates that
the unemployment rate can quickly rise to an unfavorable level if the government decides to equip
unemployed workers with a more generous unemployment insurance benefit. This seeming benefit
for unemployed workers may backfire and in turn create more unemployed workers.

The dynamic setting of our model also allows us to look into the effect of higher unemployment
benefit on workers in different stage of their career path. Figure 9b shows the impact of a 10%
increase in unemployment insurance on worker’s compensation plan and effort level. The policy
affects junior workers the most, causing them to lose around 0.5% of their labor income and inducing
them to put in 0.4% less effort in first tenure quarter. But the impact is minor for workers staying in
their job for more than 3 years.

0.1 0.2 0.3

5%

7%

9%

11%

(a) Impact on aggregate employment

0 2 4 6 8 10 12
-0.6%

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0%

(b) Impact for different tenure workers

Figure 9: Changing unemployment insurance plan

Notes: Panel A shows that a more generous unemployment insurance 𝑏 can lead to a higher unemployment rate with
the moral hazard problem taken into account. As shown in panel B, the impact of a higher unemployment insurance is
heterogeneous to workers in different tenure years: the junior workers are losing more compensation and offering less
effort in the equilibrium.

6.2 Minimum wage

Textbook labor supply and demand curves suggest that setting a minimum wage may distort the
labor market equilibrium and drive up unemployment. In the presence of a long-term incentive
contract, the entire history of worker’s output performance matters for the compensation, and all
employed workers could hit the lower bound and receive the minimum wage at any time. Since
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workers are guaranteed a minimum labor income, pushing shirking becomes more difficult, thus
exacerbating the moral hazard problem. Figure 10 shows that the unemployment rate grows
rapidly when the government raises the minimum wage. The right panel shows that total output
will decrease rapidly when minimum wage increases. Specifically, the red dotted curve represents
the output decrease due to a higher unemployment rate when we shut down the incentive channel.
The gap between the red dotted line and the blue solid line in the right panel represents the incentive
distortion that causes less effort input and thus further reduced output.
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(b) Impact on output

Figure 10: Elasticity of unemployment and output to the change in the minimum wage

Notes: Panel A shows that a higher minimum wage requirement can lead to a higher unemployment rate with the moral
hazard problem. Panel B shows that a higher minimum wage lowers the output level through two channels: employed
workers are fewer and effort provided is less.

Figure 11 shows the impact of imposing minimum wage policy on workers in different stages of
their tenure clock. Intuitively, when the government lifts the minimum wage floor, the more junior
workers will benefit from the policy but senior worker will be hurt because the incentive distortion
will dominate. Consider a minimum wage requirement that is 10% higher than unemployment
benefit is now imposed. Then as shown in Figure 11, for first year worker, the compensation is
in general higher than before, but for seasoned workers, both compensation and effort level are
reduced.
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Figure 11: Changing minimum wage

Notes: Consider a 10% rise in minimum wage. Panel A shows that junior workers will earn more than before but senior
workers will earn less than before. Panel B shows that junior workers work harder but senior workers shirk more than
before.

7. Conclusion

This paper develops a general equilibrium framework that incorporates the repeated moral haz-
ard problem into a competitive labor market. The usage of block recursive equilibrium and the
continuous-time method delivers a neat and tractable result even in a dynamic setting. We bring the
model to micro-level data and quantify the model using labor market facts and indirect inference
that estimates the variance of idiosyncratic factors. The quantified model has some implications
for key macro labor market variables. First, when we account for the moral hazard problem, the
counter-cyclical information rent on the worker side will create a more volatile unemployment rate
and counter-cyclical wage dispersion. We quantify the size of unemployment rate volatility, which
is over 8 times larger in the moral hazard model than that in information frictionless model. It can
account for over 70% of the observed unemployment rate volatility in the data. Second, we quantify
the correlation between wage dispersion and output, which is −0.34, showing strong countercycli-
cality. Third, this paper also discusses individual worker wage dynamics. The model-simulated
sample generates a 54% initial-year wage scarring effect, and workers linger in the low wage zone
for 8.7 quarters.

Future research could explore and advance in the following directions. To maintain model
simplicity and deliver a clear message about how the moral hazard problem interplays with labor
search frictions, we deliberately abstract from on-the-job search. A fully developed model could also
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take on-the-job search into consideration. An educated guess is that the moral hazard problem would
be aggravated since this environment provides workers with better outside options. The estimation
part in this paper could also be done in more cautious way. We used general accessible PSID data
to estimate the idiosyncratic factors, but arguably, firms may have firm-level observable shocks that
could affect a worker’s labor income, and such shocks are observable to firms but unobservable
to econometricians. An employer-employee matched dataset could mitigate this concern, and the
firm-level average wage for workers could be used as an identifier for firm-level observable shocks.
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Appendices

A. Information structure

In the main paper, we described how firms receive the information about the output process 𝑌𝑡 but cannot
distinguish the idiosyncratic factor 𝑑𝐵𝑡 and the worker’s unobservable effort 𝐴𝑡 . This section we will elaborate
on the information structure of firm-worker pair and be specific about firm’s and worker’s information set.

Measurement. Let’s first take a stand on measurement: assume the physical world idiosyncratic factor is
𝑑𝐵𝑡 , and 𝐵𝑡 is a Brownian motion which generates sigma-algebra ℱ𝑡 .

ℱ𝑡 = 𝜎{𝐵𝑠 , 𝑠 ≤ 𝑡}

Accordingly we denote the trajectory of idiosyncratic factor as 𝐵𝑡 = 𝜔𝐵(𝑡) and the set of all possible trajectories
to be Ω𝐵(𝑡). We use this as our coordinate functions.

It is also known that any trajectory of idiosyncratic factor realization can be described by some elementary
operation of cylinder sets 𝒞𝐵

𝑡 defined as

𝒞𝐵
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁) = {𝜔𝐵(𝑡) ∈ Ω𝐵(𝑡) | 𝐵𝑡𝑖 ∈ ℬ𝑖 , 𝑖 = 1, ..., 𝑁 , 𝑡𝑖 ∈ [0, 𝑡]}

ℬ𝑖 are Borel measurable sets. 𝑁 is the number of possible events. It is sufficient to define the probability
measure 𝑃𝑟{·} on cylinder sets 𝒞𝐵

𝑡 and then to extend it to all events and all trajectories in ℱ by the elementary
properties of a probability measure. Now our task is to specify the probability 𝑃𝑟

(𝒞𝐵
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁)) for

any points 𝑡1 , ..., 𝑡𝑁 ∈ [0, 𝑡] and Borel measurable sets ℬ1 , ...,ℬ𝑁 ⊆ R.

Let us for now denote the “objective” measure by P𝑡 = {𝑃𝐵
𝑡 }, and by the way we define P𝑡 , 𝐵𝑡 is obviously

the Brownian motion under measure P𝑡 .

𝑃𝐵
𝑡 = 𝑃𝑟

(𝒞𝐵
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁)) = 𝑁∏

𝑖=1

1√
2𝜋𝑡𝑖

∫
ℬ𝑖

exp
(
− 𝐵2

2𝑡𝑖

)
𝑑𝐵

Similarly, the trajectory of output 𝑌𝑡 can be described by some elementary operations of cylinder sets 𝒞𝑌
𝑡

𝒞𝑌
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁) = {𝜔𝑌(𝑡) ∈ Ω𝑌(𝑡) | 𝑌𝑡𝑖 ∈ ℬ𝑖 , 𝑖 = 1, ..., 𝑁 , 𝑡𝑖 ∈ [0, 𝑡]}

The worker can perfectly observe 𝐵𝑡 , and he knows his own action 𝐴𝑡 , so he can construct a “ture”
probability measure Q𝑊

𝑡 = {𝑃𝑌
𝑡 } over 𝑌𝑡 from probability measure P𝑡 .
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Since the increment of Brownian motion is independent, given 𝑑𝑌𝑡 = 𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 , we can conclude that
the conditional distributions of output with respect to action 𝐺(𝑑𝑌𝑡 | 𝐴𝑡) are independent across time.

𝐺(𝑑𝑌𝑡 | 𝐴𝑡) = 𝐺(𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 | 𝐴𝑡)

𝐺(𝑌𝑡 | 𝐴0≤𝑠≤𝑡) = 𝐺(𝑌0 +
∫ 𝑡

0
𝑧𝐴𝑠𝑑𝑠 + 𝜎𝐵𝑡 | 𝐴0≤𝑠≤𝑡)

𝑃𝑌
𝑡 = 𝑃𝑟

(𝒞𝑌
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁)) 𝑧 =

𝑁∏
𝑖=1

1√
2𝜋𝑡𝑖𝜎

∫
ℬ𝑖

exp ©«−
(𝑌 − ∫ 𝑡

0 𝑧𝐴𝑠𝑖 𝑑𝑠 − 𝑌0)2
2𝜎2𝑡𝑖

ª®¬ 𝑑𝑌
Later when we calculate the expected discount utility for worker, we need to do it underQ𝑊 measurement,

because all we care about is the probability distribution of 𝑌𝑡 process, which not only depends on exogenous 𝐵𝑡

process but also on endogenous worker’s choice of 𝐴𝑡 process.

On the other hand, firms cannot observe 𝐵𝑡 but know the probability distribution of 𝐵𝑡 trajectory. He
assumes strategy profile taken by worker as {𝐴𝐹

𝑡 } (denoted in the sense of firm recommend effort) thus
constructs his “subjective” probability measure over output process 𝑌𝑡 . Denote the probability measure of
output used by firm to be Q𝐹 = {𝑃𝑌

𝑡 }

𝐺(𝑑𝑌𝑡 | 𝐴𝐹
𝑡 ) = 𝐺(𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 | 𝐴𝐹

𝑡 ) = 𝐺(𝑧𝐴𝐹
𝑡 𝑑𝑡 + 𝜎𝑑𝐵𝐹

𝑡 )

𝐺(𝑌𝑡 | 𝐴𝐹
0≤𝑠≤𝑡) = 𝐺(𝑌0 +

∫ 𝑡

0
𝑧𝐴𝐹

𝑠 𝑑𝑠 +
∫ 𝑡

0
𝜎𝐵𝐹

𝑠 | 𝐴𝐹
0≤𝑠≤𝑡)

𝑃𝑌
𝑡 = 𝑃𝑟

(𝒞𝑌
𝑡 (𝑡𝑖 ,ℬ𝑖 , 𝑖 = 1, ...𝑁)) = 𝑁∏

𝑖=1

1√
2𝜋𝑡𝑖𝜎

∫
𝐵𝑖

exp ©«−
(𝑌 − ∫ 𝑡

0 𝑧𝐴𝐹
𝑠𝑖 𝑑𝑠 − 𝑌0)2

2𝜎2𝑡𝑖

ª®¬ 𝑑𝑌
Shifted process. Ex post, if the firm observes output process𝑌𝑡 , for each effort strategy (𝐴𝐹

𝑡 )𝑡≥0 assumed by
the firm (equivalently, the choice of deterministic function (𝐴𝐹

𝑡 )𝑡≥0), the process 𝐵𝐹 = (𝐵𝐹
𝑡 )𝑡≥0 can be referred

pointwise by the firm reciprocally,

𝐵𝐹
𝑡 =

1
𝜎

(
𝑌𝑡 −

∫ 𝑡

0
𝑧𝐴𝐹

𝑠 𝑑𝑠

)
for each possible output trajectory 𝜔𝑌 ∈ Ω𝑌 . We call 𝐵𝐹

𝑡 firm’s subjective shifted diffusion term.
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Effort process and induced measure. Noted that a deviation of worker’s strategy is essentially a change
in the measure that worker can use to evaluate the probability of the occurrence of certain paths of output.
Because worker can take any arbitrary action 𝐴𝑡 which is not necessarily 𝐴𝐹 , there may exist a gap between
objective diffusion term 𝑑𝐵𝑡 and firm’s subjective shifted diffusion term 𝑑𝐵𝐹

𝑡 even ex ante,

𝑑𝐵𝐹
𝑡 =

1
𝜎
(𝑑𝑌𝑡 − 𝑧𝐴𝐹

𝑡 𝑑𝑡) =
1
𝜎
(𝑧𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 − 𝑧𝐴𝐹

𝑡 𝑑𝑡) =
1
𝜎
(𝑧𝐴𝑡𝑑𝑡 − 𝑧𝐴𝐹

𝑡 𝑑𝑡) + 𝑑𝐵𝑡

B. Contracting problem

B.1 Perfect information contract

Proposition B.1. With perfect information, workers exert constant effort 𝐴𝐹𝐵(𝑊) and are compensated with a constant
stream of consumption 𝐶𝐹𝐵(𝑊):

𝐴𝐹𝐵(𝑊) = argmax
𝐴∈𝒜

𝑧𝐴 − 𝑢−1 [
𝑟𝑊 + 𝜙(𝐴) − (𝑊𝑢 −𝑊)𝜆𝑥

]
𝑟 + 𝜆𝑥

,

𝐶𝐹𝐵(𝑊) = 𝑢−1 [
𝑟𝑊 + 𝜙(𝐴𝐹𝐵) − (𝑊𝑢 −𝑊)𝜆𝑥

]
.

Proof. Firm will offer a first best contract that maximizes his profit

max
𝐶
E

[
−

∫ 𝜏

0
𝑒−𝑟𝑡(𝑧𝐴 − 𝐶)𝑑𝑡

]
subject to promise keeping condition towards the retired worker

E

[
𝑟
∫ 𝜏

0
𝑒−𝑟𝑡

(
𝑢(𝐶) − 𝜙(𝐴)) 𝑑𝑡 + 𝑒−𝑟𝜏𝑊𝑢

]
≥ 𝑊

The dynamics of continuation value should not load on the idiosyncratic factor

𝑑𝑊 =
[
𝑟
(
𝑊 − 𝑢(𝐶) + 𝜙(𝐴)) − (𝑊𝑢 −𝑊)𝜆𝑥

]
𝑑𝑡

The HJB equation for the firm should be

(𝑟 + 𝜆𝑥)𝐹(𝑊) = max
𝐴,𝐶
E

[
𝑧𝐴 − 𝐶 + 𝐹′(𝑊) [𝑟 (

𝑊 − 𝑢(𝐶) + 𝜙(𝐴)) − (𝑊𝑢 −𝑊)𝜆𝑥
] ]

(12)

The optimality conditions are

𝑧 + 𝑟𝐹′(𝑊)𝜙′(𝐴) = 0, −1 − 𝑟𝐹′(𝑊)𝑢′(𝐶) = 0
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Now we guess 𝑊 is not changing overtime in the perfect information case, thus by HJB equation, we will
have the value function 𝐹 being

𝐹(𝑊) = 𝑧𝐴 − 𝐶
𝑟 + 𝜆𝑥

and the drift of 𝑊 equals to zero

𝑟
(
𝑊 − 𝑢(𝐶) + 𝜙(𝐴)) − (𝑊𝑢 −𝑊)𝜆𝑥 = 0 (13)

𝑊 =
𝑟
[
𝑢(𝐶) − 𝜙(𝐴)] + 𝜆𝑥𝑊𝑢

𝑟 + 𝜆𝑥

further 𝐴 and 𝐶 take values that maximize 𝐹(𝑊) while deliver the promised utility

𝐹𝐹𝐵(𝑊) = max
𝐴∈𝒜

𝑧𝐴 − 𝑢−1
[
𝑊 + 𝜙(𝐴) − (𝑊𝑢 −𝑊)𝜆𝑥

𝑟

]
𝑟 + 𝜆𝑥

The first order condition with respect to 𝐴 is

𝑧 −
𝜕𝑢−1

[
𝑊 + 𝜙(𝐴) − (𝑊𝑢 −𝑊)𝜆𝑥

𝑟

]
𝜕

[
𝑊 + 𝜙(𝐴) − (𝑊𝑢 −𝑊)𝜆𝑥

𝑟

] 𝜙′(𝐴) = 0

Notice this is equivalent to

𝑧 − 1
𝑢′(𝐶)𝜙

′(𝐴) = 0

Thus the conjecture value function satisfies following optimality condition

𝜙′(𝐴) = 𝑧𝑢′(𝐶) (14)

Now we verify the two optimality conditions in the original HJB equation (12). Notice that if the conjecture
is right, then by (14), we only need to verify one of the optimality conditions. Take the derivative of (13) with
respect to 𝑊 is

𝑟

(
1 − 𝑢′(𝐶) 𝜕𝐶

𝜕𝑊
+ 𝜙′(𝐴) 𝜕𝐴

𝜕𝑊

)
+ 𝜆𝑥 = 0

which is equivalent to

− 𝑧
𝜕𝐴
𝜕𝑊

+ 𝜕𝐶
𝜕𝑊

=
𝜆𝑥 + 𝑟
𝑟𝑢′(𝐶)

So when we take first derivative of the conjectured value function, it gives us following equation

𝐹′(𝑊) = − 1
𝑟 + 𝜆𝑥

𝑟 + 𝜆𝑥

𝑟𝑢′(𝐶) = − 1
𝑟𝑢′(𝐶)

Apparently it satisfies the first order conditions for original HJB equation. �
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B.2 Retirement plan

Lemma B.1. If the firm retires the worker, the worker will receive constant consumption 𝐶𝑅 overtime and the firm payoff
will be 𝐹𝑅 (𝑊).

𝐶𝑅(𝑊) = 𝑢−1
[
𝑊 − 𝜆𝑥

𝑟
(𝑊𝑢 −𝑊)

]
, 𝐹𝑅 (𝑊) = −

𝑢−1
[
𝑊 − 𝜆𝑥

𝑟 (𝑊𝑢 −𝑊)
]

𝑟 + 𝜆𝑥

Proof. Firm will offer a retirement contract that maximizes his profit

max
𝐶
E

[
−

∫ 𝜏

0
𝑒−𝑟𝑡𝐶𝑑𝑡

]
subject to promise keeping to the retired worker

E

[
𝑟
∫ 𝜏

0
𝑒−𝑟𝑡𝑢 (𝐶) 𝑑𝑡 + 𝑒−𝑟𝜏𝑊𝑢

]
≥ 𝑊

The promised utility satisfies a recursive equation and the continuous time version of it defines the law of
motion of worker’s promised utility

𝑊 = 𝑟𝑢 (𝐶𝑅) 𝑑𝑡 + 𝑒−𝑟𝑑𝑡 [(1 − 𝜆𝑥𝑑𝑡) (𝑊 + 𝑑𝑊) + 𝜆𝑥𝑑𝑡𝑊𝑢]

𝑑𝑊 = [𝑟𝑊 − 𝜆𝑥 (𝑊𝑢 −𝑊) − 𝑟𝑢 (𝐶𝑅)] 𝑑𝑡
Drift of 𝑊 is zero because promised utility for retired worker is constant overtime.

𝐹𝑅 (𝑊) = −𝐶𝑅𝑑𝑡 + 𝑒−𝑟𝑑𝑡
[(1 − 𝜆𝑥𝑑𝑡)

(
𝐹𝑅 (𝑊) + 𝐹′

𝑅 (𝑊) 𝑑𝑊 ) ]
𝐹𝑅 (𝑊) = −𝐶𝑅

𝑟 + 𝜆𝑥

�

B.3 Evolution of worker’s promised utility

Under a given contract 𝐶𝑡 , the worker can arbitrarily choose effort 𝑎𝑡 and the worker’s promised utility under
such plan is defined as 𝑊 𝑎

𝑡

𝑊 𝑎
𝑡 = E

[
𝑟
∫ 𝜏

𝑡
𝑒−𝑟(𝑠−𝑡)

[
𝑢 (𝐶𝑠) − 𝜙 (𝑎𝑠)

]
𝑑𝑠 + 𝑒−𝑟(𝜏−𝑡)𝑊𝑢

]
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Consider a worker’s expected utility when taking an arbitrary action 𝑎[0,∞),

𝑉 𝑎
𝑡 =

[
𝑟
∫ 𝑡

0
𝑒−𝑟𝑠

[
𝑢 (𝐶𝑠) − 𝜙 (𝑎𝑠)

]
𝑑𝑠

]
+ 𝑒−𝑟𝑡E

[
𝑟
∫ 𝜏

𝑡
𝑒−𝑟(𝑠−𝑡)

[
𝑢 (𝐶𝑠) − 𝜙 (𝑎𝑠)

]
𝑑𝑠 + 𝑒−𝑟(𝜏−𝑡)𝑊𝑢

]
=

[
𝑟
∫ 𝑡

0
𝑒−𝑟𝑠

[
𝑢 (𝐶𝑠) − 𝜙 (𝑎𝑠)

]
𝑑𝑠

]
+ 𝑒−𝑟𝑡𝑊 𝑎

𝑡 .

(15)

Before the separation shock hits the employment match, the change of total expected value of the worker
can be replicated (hedged) by loading on all realized martingale processes in this economy up to time 𝑡:
idiosyncratic factor, aggregate shock, and compensated Poisson separation shock. The procedure is so called
“Martingale representation theorem” formally proved in Løkka (2004).

𝑉 𝑎
𝑡 = 𝑉 𝑎

0 + 𝑟
∫ 𝑡

0
𝑒−𝑟𝑠Ψ𝑏,𝑠𝜎𝐵𝑑𝐵𝑠 +

∫ 𝑡

0
𝑒−𝑟𝑠Ψ𝑥,𝑠 (𝑑𝑁𝑥

𝑠 − 𝜆𝑥𝑑𝑠) (16)

Where Ψ𝑏 ,Ψ𝑥 are respectively the sensitivity of the worker’s continuation value to idiosyncratic factors, and
to compensated separation shock. 𝑒−𝑟𝑡 is a convenient multiplier on these sensitivities. Taking derivative of
(15) and (16) leads to

𝑑𝑊 𝑎
𝑡 = 𝑟

[
𝑊 𝑎

𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝑎𝑡)
]
𝑑𝑡 + 𝑟Ψ𝑏,𝑡 (𝑑𝑌𝑡 − 𝑧𝑡 𝑎𝑡𝑑𝑡)︸           ︷︷           ︸

𝜎𝑑𝐵𝑡

+Ψ𝑥,𝑡 (𝑑𝑁𝑥,𝑡 − 𝜆𝑥𝑑𝑡)

B.4 Incentive compatibility constraint

Now we show that the incentive-compatible recommended action has to satisfy one shot deviation property.
Consider worker’s time 𝑡 total expected discounted utility 𝐺𝑡 that derived from strategy profile:

{
𝑎[0,𝑡) , 𝐴[𝑡 ,∞)

}
,

where 𝐴𝑡 is the firm recommended actions and 𝑊𝑡 is the continuation value if worker follows firm suggested
action.

𝑉𝑡 =

[
𝑟
∫ 𝑡

0
𝑒−𝑟𝑠

[
𝑢 (𝐶𝑠) − 𝜙 (𝑎𝑠) 𝑑𝑠

]
𝑑𝑠

]
+ 𝑒−𝑟𝑡𝑊𝑡

The incentive compatible condition at 𝑡 is the same as Sannikov (2008)

𝐴𝑡 ∈ arg min
𝑎∈𝒜

𝑟𝜙 (𝑎) − 𝑟Ψ𝑏,𝑡 𝑎𝑡𝑧𝑡

The first order approach gives us the sufficient sensitivity of worker continuation value to idiosyncratic factors
in order to provide worker enough incentive,

Ψ𝑏,𝑡 =
𝜙′ (𝐴𝑡)

𝑧𝑡

We will discuss more on incentive compatibility condition in lemma B.2.
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Lemma B.2. An allocation (𝐶𝑡 , 𝐴𝑡)𝑡≥0 is incentive compatible if and only if the sensitivity process Ψ𝑏,𝑡 satisfies

𝜙(𝐴𝑡) −Ψ𝑏,𝑡𝐴𝑡𝑧𝑡 ≤ 𝜙(𝑎𝑡) −Ψ𝑏,𝑡 𝑎𝑡𝑧𝑡 , ∀𝑎 ∈ 𝒜 , 0 ≤ 𝑡 < ∞ (17)

almost everywhere.

Proof. In order to discuss worker’s incentive, we should take worker’s perspective to evaluate the contract.
For any arbitrary strategy 𝑎 taken by the worker and time 𝑡 ≥ 0, define a process 𝑉 := (𝑉𝑡)𝑡≥0 to be time-𝑡
expectation of the worker’s total pay-off if he experienced the cost of effort from the strategy 𝑎 before time 𝑡,
and plans to follow the strategy 𝐴 after time 𝑡.

𝑉𝑡 = 𝑟
∫ 𝑡

0
𝑒−𝑟𝑠

[
𝑢(𝐶𝑠) − 𝜙(𝑎𝑠)

]
𝑑𝑠 + 𝑒−𝑟𝑡𝑊𝑡

𝑉𝑡 is defined in the spirit of one shot deviation principle in order to find the optimal plan in subgame perfect
equilibrium (SPE). 𝑊𝑡 represents the continuation utility if the worker sticks to 𝐴 after 𝑡. Let us identify the
drift of the process 𝑉𝑡 under the probability measure Q𝐴.

It is obvious, by construction, the continuation value of the following two strategies: (a) taking action 𝑎𝑠
in time interval (0, 𝑡] , and later switching to action 𝐴𝑠 for time period (𝑡 ,∞), and (b) taking 𝐴𝑠 at all time
(0,∞), are the same. So the law of motion for the promised utility in both strategies are the same.

Notice here when we apply martingale representation theorem, the differential of 𝑉𝑡 satisfies

𝑑𝑉𝑡 = 𝑟𝑒−𝑟𝑡
[
𝑢(𝐶𝑡) − 𝜙(𝑎𝑡)

]
𝑑𝑡 − 𝑟𝑒−𝑟𝑡𝑊𝑡𝑑𝑡 + 𝑒−𝑟𝑡𝑟[𝑊𝑡 − (𝑢(𝐶𝑡) − 𝜙(𝐴𝑡))]𝑑𝑡 + 𝑒−𝑟𝑡𝑟Ψ𝑏,𝑡𝜎𝑑𝐵𝑡

= 𝑟𝑒−𝑟𝑡
[
𝜙(𝐴𝑡) − 𝜙(𝑎𝑡)

]
𝑑𝑡 + 𝑟𝑒−𝑟𝑡Ψ𝑏,𝑡𝑧(𝑎𝑡 − 𝐴𝑡)𝑑𝑡 + 𝑟𝑒−𝑟𝑡Ψ𝑏,𝑡𝜎𝑑𝐵𝐴

𝑡

Then 𝑟𝑒−𝑟𝑡
[ (
𝜙(𝐴𝑡) −Ψ𝑏,𝑡𝑧𝐴𝑡

) − (
𝜙(𝑎𝑡) +Ψ𝑏,𝑡𝑧𝑎𝑡

) ]
is the drift of process 𝑉𝐴

𝑡 under the probability measure
Q𝐴.

To prove “if”

Now suppose the inequality (17) failed to hold on a set of positive measure and define 𝐴 = (𝐴𝑡)𝑡≥0 to be
any process satisfying

−Ψ𝑏,𝑡𝑧𝐴𝑡 + 𝜙(𝐴𝑡) = max
𝐴′∈𝒜

−Ψ𝑏,𝑡𝑧𝐴′ + 𝜙(𝐴′)

for all 𝑡 ≥ 0 almost surely. That is to say, the opposite of (17) holds for a set of positive measure if taking
𝐴 = 𝐴. Explicitly, [

𝜙(𝐴𝑡) −Ψ𝑏,𝑡𝑧𝐴𝑡
] − [

𝜙(𝐴𝑡) −Ψ𝑏,𝑡𝑧𝐴𝑡

]
> 0 (18)

holds on a set of positive measure. Then the drift of 𝑉𝐴
𝑡 (under Q𝐴

𝑡 ) is positive on a set of positive measure.
Thus there exist a time 𝑇 > 0 such that
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E𝐴
[
𝑉𝐴
𝑇

]
> 𝑉𝐴

0 = 𝑉𝐴
0 = 𝑊0(𝐶, 𝐴)

That is to say for the time sets that (17) does not hold, if worker deviates from 𝐴 to 𝐴, his momentary drift
of utility 𝑉𝐴 will be positive by (18). The worker gets utility E𝐴

[
𝑉𝐴
𝑇

]
if he follows 𝐴 up to time 𝑡 and then

switches back to 𝐴. The utility is higher than sticking with 𝐴 all the time. Then the strategy 𝐴 is sub-optimal.
We get a contradiction.

To prove “only if”

Suppose (17) holds for strategy𝐴, then𝑉𝑡 is aQ𝐴- supermartingale for any alternative strategy 𝑎. Moreover,
since the process 𝑊(𝐶, 𝑎) is bounded from below, we can add

𝑉∞ = 𝑟
∫ ∞

0
𝑒−𝑟𝑠

[
𝑢(𝐶𝑠) − 𝜙(𝑎𝑠)

]
𝑑𝑠

as the last element of the super-MTG 𝑉 𝑎 . Therefore,

𝑊0(𝐶, 𝐴) = 𝑉𝐹
0 = 𝑉 𝑎

0 ≥ E𝑎[𝑉∞] = 𝑊0(𝐶, 𝑎)

so the strategy 𝐴 is at least as good as any alternative strategy 𝑎. �

B.5 Lower bound condition

In this section we will show that the lower bound condition is characterized by following equation,

𝐹′(𝑊𝑢) =
𝐹(𝑊𝑢) − 𝐹𝑅(𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
)

𝑊𝑢 − 𝜆𝑥𝑊𝑢
𝑟+𝜆𝑥

The recursive problem of the operating firm that can temporarily suspend the worker is

𝐹 (𝑊𝑡) = max

{
max𝐴,𝐶,Ψ𝑏

{(𝑧𝑡𝐴𝑡 − 𝐶𝑡) 𝑑𝑡 + 𝑒−𝑟𝑑𝑡𝐹 (𝑊𝑡+𝑑𝑡) (1 − 𝜆𝑥𝑑𝑡)
}
,

max𝐶
{−𝐶𝑡 + 𝑒−𝑟𝑑𝑡𝐹 (𝑊𝑡+𝑑𝑡) (1 − 𝜆𝑥𝑑𝑡)

} }
We will study the two options as two separate optimizing problem and combine their solutions to derive
an optimal contract. Denote the firm’s payoff when the worker takes low effort (𝐴 = 0) to be 𝐿(𝑊), and the
firm’s payoff when the worker takes non-zero effort to be 𝐻(𝑊). Denote the corresponding low-effort region of
promised utility to be𝒲𝐿 = [𝑊𝑢 ,𝑊𝑠) and the high-effort region of promised utility to be𝒲𝐻 = [𝑊𝑠 ,𝑊𝑟]. The
firm’s problem under high- and low- effort region can be summarized by two separate ordinary differential
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equations (ODEs). We refer the first ODE as high-effort ODE, and the second ODE as low-effort ODE

(𝑟 + 𝜆𝑥)𝐻 (𝑊𝑡) = max
𝐴,𝐶,Ψ𝑏

(𝑧𝑡𝐴𝑡 − 𝐶𝑡) + 𝐻′ (𝑊𝑡)
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)

) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥
]

+ 𝐻′′ (𝑊𝑡)
2 (𝑟Ψ𝑏,𝑡𝜎)2

(𝑟 + 𝜆𝑥) 𝐿 (𝑊𝑡) = max
𝐶

−𝐶𝑡 + 𝐿′(𝑊𝑡) [𝑟 (𝑊𝑡 − 𝑢(𝐶𝑡)) − 𝜆𝑥(𝑊𝑢 −𝑊𝑡)] (19)

We demonstrates the firm’s profit under the optimal contract in Figure 12. In low effort region 𝒲𝐿, the
evolution of promised utility is deterministic and the firm’s profit is a linear function in promised utility (see
details in Lemma B.3). In high effort region 𝒲𝐻 , the evolution of promised utility is stochastic, and the firm’s
profit is hump shaped.

Figure 12: Low effort and high effort region

Lemma B.3. The set of solutions 𝐿 (𝑊) to Equation (19) consists of all straight lines with nonnegative slope passing
through the point

(
𝜆𝑥𝑊𝑢
𝑟+𝜆𝑥

, 𝐹𝑅(𝜆𝑥𝑊𝑢
𝑟+𝜆𝑥

)
)
.

Proof. Intuitively, the solution to low-action ODE is to set 𝐶𝑡 = 0 (taking first order derivative on the right
hand side of low-action ODE). Now let’s formally prove the solution and get more characteristics of value
function 𝐿(𝑊). Define �̃� as 𝑢(𝐶), the low-action ODE becomes

(𝑟 + 𝜆𝑥) 𝐿(𝑊𝑡) = max
�̃�≥0

(𝑟 + 𝜆𝑥)𝐹𝑅( 𝑟�̃� + 𝜆𝑥𝑊𝑢

𝑟 + 𝜆𝑥
) + 𝐿′(𝑊𝑡)

[
𝑟
(
𝑊𝑡 − �̃�𝑡

)
− 𝜆𝑥(𝑊𝑢 −𝑊𝑡)

]
(20)

We will look for solutions to this ODE in the region ℛ := {(𝑊, 𝐿) : 𝐿 > 𝐹𝑅(𝑊)}. If we denote the maximizer
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in (20) by 𝑊 ∗, the low-action ODE can be transformed into

(𝑟 + 𝜆𝑥) 𝐿(𝑊𝑡) = (𝑟 + 𝜆𝑥)𝐹𝑅( 𝑟�̃� + 𝜆𝑥𝑊𝑢

𝑟 + 𝜆𝑥
) + 𝐿′(𝑊𝑡) [(𝑟 + 𝜆𝑥)𝑊𝑡 − 𝑟𝑊 ∗ − 𝜆𝑥𝑊𝑢]

If𝑊 ∗ = (𝑟+𝜆𝑥 )𝑊−𝜆𝑥𝑊𝑢
𝑟 , then 𝐿(𝑊) = 𝐹𝑅( 𝑟𝑊 ∗+𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
) = 𝐹𝑅(𝑊), which is not in ℛ. So𝑊 ∗ ≠ (𝑟+𝜆𝑥 )𝑊−𝜆𝑥𝑊𝑢

𝑟 , then 𝐿(𝑊)
is a straight line with slope 𝐿′(𝑊) ≥ 0. 15 The optimal 𝑊 ∗ in (20) is 𝑊 ∗ = 0 and 𝐹𝑅( 𝑟𝑊 ∗+𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
) = 𝐹𝑅(𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
), so

(20) reduces to

𝐿(𝑊𝑡) − 𝐹𝑅( 𝜆𝑥𝑊𝑢

𝑟 + 𝜆𝑥
) = 𝐿′(𝑊𝑡)

[
𝑊𝑡 − 𝜆𝑥

𝑟 + 𝜆𝑥
𝑊𝑢

]
Thus the set of solutions with nonnegative slope consists of all straight lines going through the point
( 𝜆𝑥
𝑟+𝜆𝑥

𝑊𝑢 , 𝐹𝑅(𝜆𝑥𝑊𝑢
𝑟+𝜆𝑥

)). �

The optimal contract is obtained when𝑊𝑠 is set as low as possible because a larger support [𝑊𝑠 ,𝑊𝑟] could
sustain positive effort for a longer period. With a larger high-effort support, the volatility in the continuation
value will not drive 𝑊𝑡 to collide with 𝑊𝑠 as quickly. Therefore, the low-effort region will degenerate into
one point at 𝑊𝑢 . To guarantee the consistency of the contract over the entire contracting space, the smooth
pasting condition must be satisfied at point 𝑊𝑢 .

B.6 Worker’s distribution

In the steady state, the stationary distribution of employed workers 𝐺 (𝑊𝑡) satisfies

0 = − 𝜕

𝜕𝑊

[ (
𝑟(𝑊𝑡 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥)

)
𝐺(𝑊𝑡)

]︸                                                                  ︷︷                                                                  ︸
Change in density from

the drift of promised utility

+ 1
2

𝜕2

𝜕𝑊2

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎

)2

𝐺(𝑊𝑡)
]

︸                                 ︷︷                                 ︸
Change in density from

the volatility of promised utility

− 𝜆𝑥𝐺(𝑊𝑡)︸    ︷︷    ︸
Exit from

exo. termination

(21)

By imposing proper boundary conditions, (21) can be solved. Here the lower bound is reflective and the
upper bound is absorbing, then according to Dixit (2013) the corresponding boundary conditions are

𝜕𝐺(𝑊𝑢)
𝜕𝑊

= 0, 𝐺(𝑊𝑟) = 0.

15Cases where 𝐿′(𝑊) < 0 are of less interests because they will not be part of the optimal contract.
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B.7 Determination of the lower bound

The expected utility for an individual unemployed worker is 𝑊𝑢,𝑡 and the promised utility for newly hired
worker is 𝑊0,𝑡

𝑊𝑢,𝑡 = 𝑟𝑢 (𝑏) 𝑑𝑡 + 𝑒−𝑟𝑑𝑡
[(1 − 𝑝(𝜃𝑡)𝑑𝑡)𝑊𝑢,𝑡+𝑑𝑡 + 𝑝(𝜃𝑡)𝑑𝑡𝑊0,𝑡+𝑑𝑡

]
At the steady state, 𝑊𝑢,𝑡 and 𝑊0,𝑡 are constant. In the limit, 𝑒−𝑟𝑑𝑡 = 1 − 𝑟𝑑𝑡

𝑊𝑢 = 𝑟𝑢 (𝑏) + 𝑝𝑑𝑡𝑊0 + (
1 − 𝑟𝑑𝑡 − 𝑝(𝜃)𝑑𝑡) 𝑊𝑢

The expected utility for the unemployed workers consists of two parts: utility from unemployment benefit,
and utility from job searching.

𝑟𝑊𝑢 = 𝑟𝑢(𝑏) + 𝑝(𝜃) (𝑊0 −𝑊𝑢)

C. Dynamic model analysis

Now we include regime switching productivity shock into the analysis. Productivity shock is publicly
observable to all: 𝑧𝑡 has two possible states, 𝑧 ∈ {𝑧𝐺 , 𝑧𝐵}. The state switching follows a continuous time
two-state Markov transition process with switching rate 𝜆𝑧 (𝑧𝑡). 𝑑𝑁𝑧,𝑡 = 1 describes the times at which 𝑧 state
changes. The cumulative output is 𝑌𝑡

𝑑𝑌𝑡 = (𝑧𝑡𝐴𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡)1[𝜏,∞)

where 𝐴 is unobservable labor hour input by worker. 𝜏 is the separation time.

C.1 Retirement plan

The firm can retire an worker at any time. Once worker is retired, he will exert zero effort and receive
a constant flow of consumption. Denote the continuation value under aggregate state 𝑧 to be 𝑊𝑧 , and
that under aggregate state 𝑧𝑐 to be 𝑊𝑧𝑐 . Denote the unemployment expected payoff under 𝑧 and 𝑧𝑐 to be
respectively 𝑊𝑢 (𝑧), 𝑊𝑢 (𝑧𝑐).

If the aggregate state at the retirement point is 𝑧, then starting promised utility is 𝑊𝑧

𝑢(𝐶) = (𝜆𝑥 + 𝑟)𝑊𝑧

𝑟
− 𝜆𝑥 (𝜆𝑥𝑊𝑢(𝑧) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧) + 𝑟𝑊𝑢(𝑧))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟)

𝐹𝑅 (𝑊𝑧 , 𝑧) = −𝐶
𝑟 + 𝜆𝑥
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If the aggregate state at the retirement point is 𝑧𝑐 , then starting promised utility is 𝑊𝑧𝑐

𝑢(𝐶) = (𝜆𝑥 + 𝑟)𝑊𝑧𝑐

𝑟
− 𝜆𝑥 (𝜆𝑥𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧) + 𝑟𝑊𝑢(𝑧𝑐))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟)

𝐹𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = −𝐶
𝑟 + 𝜆𝑥

Proof. The law of motion for continuation under both aggregate states are respectively

𝑑𝑊𝑧 =
[
𝑟 (𝑊𝑧 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

]
𝑑𝑡

𝑑𝑊𝑧𝑐 =
[
𝑟 (𝑊𝑧𝑐 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

]
𝑑𝑡

where 𝜓𝑧 = 𝑊𝑧𝑐 −𝑊𝑧 , 𝜓𝑧𝑐 = 𝑊𝑧 −𝑊𝑧𝑐 . And 𝜓𝑧𝑐 = −𝜓𝑧 .

The HJB equations for a firm in retirement contract under both 𝑧 and 𝑧𝑐 states are

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧)) 𝐹𝑅 (𝑊𝑧 , 𝑧) = max
𝐶,𝜓𝑧

− 𝐶 + 𝜆𝑧(𝑧)𝐹𝑅 (
𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐

)
+ 𝐹′

𝑅 (𝑊, 𝑧) [𝑟 (𝑊𝑧 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧
] (22)

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧𝑐)) 𝐹𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = max
𝐶,𝜓𝑧𝑐

− 𝐶 + 𝜆𝑧(𝑧𝑐)𝐹𝑅 (
𝑊𝑧𝑐 + 𝜓𝑧𝑐 , 𝑧

)
+ 𝐹′

𝑅 (𝑊𝑧𝑐 , 𝑧𝑐)
[
𝑟 (𝑊𝑧𝑐 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

] (23)

The first order conditions for (22) are
− 1 − 𝑟𝐹′

𝑅(𝑊, 𝑧)𝑢′(𝐶) = 0

− 𝐹′
𝑅(𝑊, 𝑧)𝜆𝑧(𝑧) + 𝜆𝑧(𝑧)𝐹′

𝑅(𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐) = 0

The first order conditions for (23) are

− 1 − 𝑟𝐹′
𝑅(𝑊, 𝑧𝑐)𝑢′(𝐶) = 0

− 𝐹′
𝑅(𝑊, 𝑧𝑐)𝜆𝑧(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝐹′

𝑅(𝑊𝑧𝑐 + 𝜓𝑧𝑐 , 𝑧) = 0

Use guess and verify method. We guess that the policy function 𝐶𝑡 and 𝜓𝑡 are chosen to make the drift of 𝑊𝑧

and 𝑊𝑧𝑐 equal to zero.
𝑑𝑊𝑧 =

[
𝑟 (𝑊𝑧 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

]
𝑑𝑡

𝑑𝑊𝑧𝑐 =
[
𝑟 (𝑊𝑧𝑐 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

]
𝑑𝑡

The linear equation system is

0 = 𝑟 (𝑊𝑧 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

51



0 = 𝑟 (𝑊𝑧𝑐 − 𝑢(𝐶)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

Jointly we can solve for 𝑢(𝐶) and 𝜓𝑧 . Also we know 𝜓𝑧 = 𝑊𝑧𝑐 −𝑊𝑧 = −𝜓𝑧𝑐 .

𝑢(𝐶) = 𝑟 (𝜆𝑧(𝑧𝑐)𝑊𝑧 + 𝜆𝑧(𝑧)𝑊𝑧𝑐 )) − 𝜆𝑥 [𝜆𝑧(𝑧𝑐)(𝑊𝑢(𝑧) −𝑊𝑧) + 𝜆𝑧(𝑧)(𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 )]
𝑟 (𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐)) (24)

𝜓𝑧 =
−𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑢(𝑧𝑐)) + (𝑟 + 𝜆𝑥)(𝑊𝑧 −𝑊𝑧𝑐 )

𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐)

𝜓𝑧 = − 𝜆𝑥(𝑊𝑢(𝑧) −𝑊𝑢(𝑧𝑐))
𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟

Given the drift term of 𝑊𝑧 and 𝑊𝑧𝑐 being zero, the HJB equations degenerate into

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧)) 𝐹𝑅 (𝑊𝑧 , 𝑧) = max
𝐶,𝜓𝑧

−𝐶 + 𝜆𝑧(𝑧)𝐹𝑅
(
𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐

)
(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧𝑐)) 𝐹𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = max

𝐶,𝜓𝑧
−𝐶 + 𝜆𝑧(𝑧𝑐)𝐹𝑅

(
𝑊𝑧𝑐 + 𝜓𝑧𝑐 , 𝑧

)
suppose 𝐶 and 𝜓 are already optimal choices, the HJB equation system delivers

𝐹𝑅 (𝑊𝑧 , 𝑧) = −𝐶
𝑟 + 𝜆𝑥

, 𝐹𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = −𝐶
𝑟 + 𝜆𝑥

If the aggregate state at the retirement point is 𝑧, then starting promised utility is 𝑊𝑧 . Replace 𝑊𝑧𝑐 with
𝑊𝑧 + 𝜓𝑧 in (24) we get the following,

𝑢(𝐶) = (𝜆𝑥 + 𝑟)𝑊𝑧

𝑟
− 𝜆𝑥 ((𝜆𝑥 + 𝜆𝑧(𝑧𝑐) + 𝑟)𝑊𝑢(𝑧) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟) , (25)

𝐹𝑅 (𝑊𝑧 , 𝑧) = −𝐶
𝑟 + 𝜆𝑥

.

If the aggregate state at the retirement point is 𝑧𝑐 , then the starting promised utility is 𝑊𝑧𝑐

𝑢(𝐶) = (𝜆𝑥 + 𝑟)𝑊𝑧𝑐

𝑟
− 𝜆𝑥 ((𝜆𝑥 + 𝜆𝑧(𝑧) + 𝑟)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟) ,

𝐹𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = −𝐶
𝑟 + 𝜆𝑥

.

To verify the solution is optimal, we check whether the optimality conditions are satisfied. Denote𝑢(𝐶) = 𝑓 (𝑊)
in (25).

𝐹′
𝑅 (𝑊𝑧 , 𝑧) = − (

𝑢−1)′ ( 𝑓 (𝑊)) 𝑓 ′(𝑊)
𝑟 + 𝜆𝑥

= − 𝜆𝑥 + 𝑟
𝑟 (𝑟 + 𝜆𝑥) 𝑢′(𝐶) = − 1

𝑟𝑢′(𝐶)
where 𝑓 (𝑊) is the right hand side of (25). Obviously, the allocation satisfies the first order conditions regarding
𝐶. At the same time 𝐹′

𝑅 (𝑊𝑧 , 𝑧) = 𝐹′
𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = − 1

𝑟𝑢′(𝐶) , so the optimality condition regarding 𝜓𝑧 also satisfies.
So we have verified the constant consumption plan is indeed the optimal retirement plan. �
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Figure 13 illustrates the firm’s profit of a retirement contract. Intuitively, the firm’s profit is larger under
good aggregate state than that under bad aggregate state.
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Figure 13: The elasticity of the unemployment rate with respect to 𝑧

C.2 Perfect information contract

The most effective way for the employer to deliver the promised utility is through compensating the worker a
constant stream of consumption goods 𝐶 and let the worker put in constant effort 𝐴 despite of the aggregate
state. Denote the continuation value under aggregate state 𝑧 to be 𝑊𝑧 , and that under aggregate state 𝑧𝑐 to be
𝑊𝑧𝑐 . And the unemployment expected payoff under 𝑧 and 𝑧𝑐 to be respectively 𝑊𝑢 (𝑧), 𝑊𝑢 (𝑧𝑐).

If the aggregate state at the retirement point is 𝑧, then starting promised utility is 𝑊𝑧

𝑢(𝐶) − 𝜙(𝐴) = (𝜆𝑥 + 𝑟)𝑊𝑧

𝑟
− 𝜆𝑥 (𝜆𝑥𝑊𝑢(𝑧) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧) + 𝑟𝑊𝑢(𝑧))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟)

𝐹𝐹𝐵 (𝑊𝑧 , 𝑧) = 𝑧𝐴 − 𝐶
𝑟 + 𝜆𝑥

If the aggregate state at the retirement point is 𝑧𝑐 , then starting promised utility is 𝑊𝑧𝑐

𝑢(𝐶) − 𝜙(𝐴) = (𝜆𝑥 + 𝑟)𝑊𝑧𝑐

𝑟
− 𝜆𝑥 (𝜆𝑥𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧) + 𝑟𝑊𝑢(𝑧𝑐))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟)

𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐) = 𝑧𝑐𝐴 − 𝐶
𝑟 + 𝜆𝑥
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Proof. The law of motion for continuation under both aggregate states are respectively

𝑑𝑊𝑧 =
[
𝑟
(
𝑊𝑧 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

]
𝑑𝑡

𝑑𝑊𝑧𝑐 =
[
𝑟
(
𝑊𝑧𝑐 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

]
𝑑𝑡

where 𝜓𝑧 = 𝑊𝑧𝑐 −𝑊𝑧 , 𝜓𝑧𝑐 = 𝑊𝑧 −𝑊𝑧𝑐 . And 𝜓𝑧𝑐 = −𝜓𝑧 . The HJB equation for a firm under both 𝑧 and 𝑧𝑐

states are

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧)) 𝐹𝐹𝐵 (𝑊𝑧 , 𝑧) = max
𝐶,𝜓𝑧

−𝐶 + 𝜆𝑧(𝑧)𝐹𝐹𝐵 (
𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐

)
+ 𝐹′

𝐹𝐵 (𝑊, 𝑧) [𝑟 (
𝑊𝑧 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

] (26)

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧𝑐)) 𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐) = max
𝐶,𝜓𝑧𝑐

−𝐶 + 𝜆𝑧(𝑧𝑐)𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧)

+ 𝐹′
𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐)

[
𝑟
(
𝑊𝑧𝑐 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

] (27)

The first order conditions for (26) are

− 1 − 𝑟𝐹′
𝐹𝐵(𝑊, 𝑧)𝑢′(𝐶) = 0

𝑧 + 𝑟𝐹′
𝐹𝐵(𝑊𝑧 , 𝑧)𝜙′(𝐴) = 0

− 𝐹′
𝐹𝐵(𝑊, 𝑧)𝜆𝑧(𝑧) + 𝜆𝑧(𝑧)𝐹′

𝐹𝐵(𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐) = 0

The first order conditions for (27) are

− 1 − 𝑟𝐹′
𝐹𝐵(𝑊, 𝑧𝑐)𝑢′(𝐶) = 0

𝑧𝑐 + 𝑟𝐹′
𝐹𝐵(𝑊𝑧𝑐 , 𝑧𝑐)𝜙′(𝐴) = 0

− 𝐹′
𝐹𝐵(𝑊, 𝑧𝑐)𝜆𝑧(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝐹′

𝐹𝐵(𝑊𝑧𝑐 + 𝜓𝑧𝑐 , 𝑧) = 0

Use guess and verify method. Guess the policy function 𝐶𝑡 and 𝜓𝑡 are chosen to make the drift of 𝑊𝑧 and
𝑊𝑧𝑐 equal to zero.

𝑑𝑊𝑧 =
[
𝑟
(
𝑊𝑧 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

]
𝑑𝑡

𝑑𝑊𝑧𝑐 =
[
𝑟
(
𝑊𝑧𝑐 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐

]
𝑑𝑡

The linear equation system is

0 = 𝑟
(
𝑊𝑧 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑧) − 𝜆𝑧(𝑧)𝜓𝑧

0 = 𝑟
(
𝑊𝑧𝑐 − 𝑢(𝐶) + 𝜙(𝐴)) − 𝜆𝑥 (𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 ) − 𝜆𝑧(𝑧𝑐)𝜓𝑧𝑐
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Jointly we can solve for 𝑢(𝐶) − 𝜙(𝐴) and 𝜓𝑧 . Also we know 𝜓𝑧 = 𝑊𝑧𝑐 −𝑊𝑧 = −𝜓𝑧𝑐 .

𝑢(𝐶) − 𝜙(𝐴) = 𝑟 (𝜆𝑧(𝑧𝑐)𝑊𝑧 + 𝜆𝑧(𝑧)𝑊𝑧𝑐 )) − 𝜆𝑥 [𝜆𝑧(𝑧𝑐)(𝑊𝑢(𝑧) −𝑊𝑧) + 𝜆𝑧(𝑧)(𝑊𝑢(𝑧𝑐) −𝑊𝑧𝑐 )]
𝑟 (𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐)) (28)

𝜓𝑧 =
−𝜆𝑥 (𝑊𝑢(𝑧) −𝑊𝑢(𝑧𝑐)) + (𝑟 + 𝜆𝑥)(𝑊𝑧 −𝑊𝑧𝑐 )

𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐)

𝜓𝑧 = − 𝜆𝑥(𝑊𝑢(𝑧) −𝑊𝑢(𝑧𝑐))
𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟

Given the drift term of 𝑊𝑧 and 𝑊𝑧𝑐 being zero, the HJB equations degenerate into

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧)) 𝐹𝐹𝐵 (𝑊𝑧 , 𝑧) = max
𝐶,𝜓𝑧

𝑧𝐴 − 𝐶 + 𝜆𝑧(𝑧)𝐹𝐹𝐵
(
𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐

)
(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧𝑐)) 𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐) = max

𝐶,𝜓𝑧𝑐
𝑧𝑐𝐴 − 𝐶 + 𝜆𝑧(𝑧𝑐)𝐹𝐹𝐵

(
𝑊𝑧𝑐 + 𝜓𝑧𝑐 , 𝑧

)
Suppose 𝐶 and 𝜓 are already optimal choices, the HJB equation system delivers

𝐹𝐹𝐵 (𝑊𝑧 , 𝑧) = 𝑧𝐴 − 𝐶
𝑟 + 𝜆𝑥

𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐) = 𝑧𝑐𝐴 − 𝐶
𝑟 + 𝜆𝑥

If the aggregate state at the retirement point is 𝑧, then starting promised utility is 𝑊𝑧 . Replace 𝑊𝑧𝑐 with
𝑊𝑧 + 𝜓𝑧 in (28) we got,

𝑢(𝐶) − 𝜙(𝐴) = (𝜆𝑥 + 𝑟)𝑊𝑧

𝑟
− 𝜆𝑥 ((𝜆𝑥 + 𝜆𝑧(𝑧𝑐) + 𝑟)𝑊𝑢(𝑧) + 𝜆𝑧(𝑧)𝑊𝑢(𝑧𝑐))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟) , (29)

𝐹𝐹𝐵 (𝑊𝑧 , 𝑧) = 𝑧𝐴 − 𝐶
𝑟 + 𝜆𝑥

.

If the aggregate state at the retirement point is 𝑧𝑐 , then starting promised utility is 𝑊𝑧𝑐

𝑢(𝐶) − 𝜙(𝐴) = (𝜆𝑥 + 𝑟)𝑊𝑧𝑐

𝑟
− 𝜆𝑥 ((𝜆𝑥 + 𝜆𝑧(𝑧) + 𝑟)𝑊𝑢(𝑧𝑐) + 𝜆𝑧(𝑧𝑐)𝑊𝑢(𝑧))

𝑟 (𝜆𝑥 + 𝜆𝑧(𝑧) + 𝜆𝑧(𝑧𝑐) + 𝑟) ,

𝐹𝐹𝐵 (𝑊𝑧𝑐 , 𝑧𝑐) = 𝑧𝑐𝐴 − 𝐶
𝑟 + 𝜆𝑥

.

To verify the solution is optimal, we check whether the optimality conditions are satisfied. Taking
derivative w.r.t 𝑊 on both sides of (29)

𝑢′(𝐶) 𝜕𝐶
𝜕𝑊

− 𝜙′(𝐴) 𝜕𝐴
𝜕𝑊

=
𝜆𝑥 + 𝑟

𝑟
.
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Then the derivative of First Best firm profit is

𝐹′
𝐹𝐵 (𝑊𝑧 , 𝑧) = 1

𝑟 + 𝜆𝑥

(
𝑧
𝜕𝐴
𝜕𝑊

− 𝜕𝐶
𝜕𝑊

)
= − 1

𝑟𝑢′(𝐶) .

Obviously, the allocation satisfies the first order conditions regarding 𝐶 and 𝐴. At the same time
𝐹′
𝑅 (𝑊𝑧 , 𝑧) = 𝐹′

𝑅 (𝑊𝑧𝑐 , 𝑧𝑐) = − 1
𝑟𝑢′(𝐶) , so the optimality condition regarding 𝜓𝑧 also satisfies. So we have

verified the constant consumption plan is indeed the optimal contract. �

C.3 Constrained optimal contract

Operating firm’s problem. The operating firm propose a long term contract that maximize expected
profit

max
𝐶
E

[∫ 𝜏

0
𝑒−𝑟𝑡 (𝑧𝑡𝐴𝑑𝑡 − 𝐶𝑡𝑑𝑡) |𝑧0

]
subject to deliver intial promised utility 𝑊0 to the worker

E

[∫ 𝜏

0
𝑒−𝑟𝑡

(
𝑢 (𝐶𝑡) − 𝜙 (𝐴)) 𝑑𝑡 + 𝑒−𝑟𝜏𝑊𝑢 (𝑧𝜏)

]
= 𝑊0

and the contract must be incentive compatible.

Employed worker’s problem. There exist exogenous separation shock 𝑁𝑥 and aggregate regime switch-
ing shock 𝑁𝑧 . Then worker’s promised utility can be described by a stochastic differential equation

𝑑𝑊 𝑎
𝑡 =

[
𝑟
(
𝑊 𝑎

𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝑎𝑡)) ] 𝑑𝑡 +Ψ𝑏,𝑡𝜎𝐵𝑑𝐵𝑡 +Ψ𝑥,𝑡 (𝑑𝑁𝑥,𝑡 − 𝜆𝑥𝑑𝑡) +Ψ𝑧,𝑡 (𝑑𝑁𝑧,𝑡 − 𝜆𝑧 (𝑧𝑡) 𝑑𝑡)

where Ψ𝑥,𝑡 satisfies
Ψ𝑥,𝑡 = 𝑊𝑢 (𝑧𝑡) −𝑊𝑡

When neither 𝑁𝑥 nor 𝑁𝑧 has arrived yet, the continuation value is described by the following stochastic
differential equation

𝑑𝑊𝑡 =
[
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊𝑡) − 𝜆𝑧 (𝑧)Ψ𝑧,𝑡

]
𝑑𝑡 +Ψ𝑏,𝑡𝜎𝑑𝐵𝑡

The incentive-compatible constraint is

𝑧𝑡Ψ𝑏,𝑡 = 𝑟𝜙′ (𝐴𝑡)
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Operating firm’s recursive problem. The firm’s problem can be written into recursive problem with
value function depending on two state variables 𝑊, 𝑧

𝐹 (𝑊, 𝑧) = max
𝐴,𝐶,Ψ𝑧

𝑧𝑡𝐴𝑑𝑡 − 𝐶𝑡𝑑𝑡

+ 𝑒−𝑟𝑑𝑡
[
(1 − 𝜆𝑥𝑑𝑡 − 𝜆𝑧(𝑧)𝑑𝑡)

(
𝐹 (𝑊, 𝑧) + 𝐹𝑊 (𝑊, 𝑧) 𝑑𝑊 + 1

2𝐹𝑊𝑊 (𝑊, 𝑧) 𝑑⟨𝑊⟩
)

+𝜆𝑧(𝑧)𝑑𝑡𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐) + 𝜆𝑥𝑑𝑡𝑉 (𝑧)]

The HJB equation is

𝑟𝐹 (𝑊, 𝑧) = max
𝐴,𝐶,Ψ𝑧

𝑧𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧) (𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐) − 𝐹 (𝑊, 𝑧)) − 𝜆𝑥𝐹 (𝑊, 𝑧)

+ 𝐹𝑊 (𝑊, 𝑧) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊) − 𝜆𝑧 (𝑧)Ψ𝑧

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧)
(
𝑟𝜙′ (𝐴)

𝑧

)2

𝜎2

and the coupled HJB equation for 𝑧𝑐 is

𝑟𝐹 (𝑊, 𝑧𝑐) = max
𝐴,𝐶,Ψ𝑧𝑐

𝑧𝑐𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧𝑐) (𝐹 (𝑊 +Ψ𝑧𝑐 , 𝑧) − 𝐹 (𝑊, 𝑧𝑐)) − 𝜆𝑥𝐹 (𝑊, 𝑧𝑐)

+ 𝐹𝑊 (𝑊, 𝑧𝑐) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧𝑐) −𝑊) − 𝜆𝑧 (𝑧𝑐)Ψ𝑧𝑐

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧𝑐)
(
𝑟𝜙′ (𝐴)

𝑧𝑐

)2

𝜎2

By collecting items, we can write the HJB equation system into

(𝑟 + 𝜆𝑧(𝑧) + 𝜆𝑥) 𝐹 (𝑊, 𝑧) = max
𝐴,𝐶,Ψ𝑧

𝑧𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧)𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐)

+ 𝐹𝑊 (𝑊, 𝑧) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊) − 𝜆𝑧 (𝑧)Ψ𝑧

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧)
(
𝑟𝜙′ (𝐴)

𝑧

)2

𝜎2

and the coupled HJB equation for 𝑧𝑐 is

(𝑟 + 𝜆𝑧(𝑧𝑐) + 𝜆𝑥) 𝐹 (𝑊, 𝑧𝑐) = max
𝐴,𝐶,Ψ𝑧

𝑧𝑐𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧𝑐)𝐹 (𝑊 +Ψ𝑧𝑐 , 𝑧)

+ 𝐹𝑊 (𝑊, 𝑧𝑐) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧𝑐) −𝑊) − 𝜆𝑧 (𝑧𝑐)Ψ𝑧𝑐

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧𝑐)
(
𝑟𝜙′ (𝐴)

𝑧𝑐

)2

𝜎2
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Optimality conditions. For 𝑧 ∈ 𝒵, the following first order conditions hold

[𝐴] 𝑧 + 𝑟𝐹𝑊 (𝑊, 𝑧)𝜙′ (𝐴) + 𝜎2𝑟2

𝑧2 𝐹𝑊𝑊 (𝑊, 𝑧)𝜙′ (𝐴)𝜙′′ (𝐴) = 0

[𝐶] − 1 − 𝑟𝐹𝑊 (𝑊, 𝑧) 𝑢′ (𝐶) = 0

[Ψ𝑧] 𝐹𝑊 (𝑊, 𝑧) = 𝐹𝑊 (𝑊 +Ψ𝑧 , 𝑧𝑐)

Boundary conditions. For 𝐹(𝑊, 𝑧), the boundary conditions are

𝐹′(𝑊𝑢(𝑧), 𝑧) =
𝐹(𝑊𝑢(𝑧)) − 𝐹𝑅(𝜆𝑥𝑊𝑢 (𝑧)

𝑟+𝜆𝑥
)

𝑊𝑢(𝑧) − 𝜆𝑥
𝑟+𝜆𝑥

𝑊𝑢(𝑧)
𝐹 (𝑊𝑟(𝑧), 𝑧) = 𝐹𝑅 (𝑊𝑟(𝑧), 𝑧)
𝐹′ (𝑊𝑟(𝑧), 𝑧) = 𝐹′

𝑅 (𝑊𝑟(𝑧), 𝑧)

For 𝐹(𝑊, 𝑧𝑐), the boundary conditions are

𝐹′(𝑊𝑢(𝑧𝑐), 𝑧𝑐) =
𝐹(𝑊𝑢(𝑧)) − 𝐹𝑅(𝜆𝑥𝑊𝑢 (𝑧𝑐 )

𝑟+𝜆𝑥
)

𝑊𝑢(𝑧𝑐) − 𝜆𝑥
𝑟+𝜆𝑥

𝑊𝑢(𝑧𝑐)

𝐹 (𝑊𝑟(𝑧𝑐), 𝑧𝑐) = 𝐹𝑅 (𝑊𝑟(𝑧𝑐), 𝑧𝑐)
𝐹′ (𝑊𝑟(𝑧𝑐), 𝑧𝑐) = 𝐹′

𝑅 (𝑊𝑟(𝑧𝑐), 𝑧𝑐)

Notice that 𝑊𝑟 (𝑧) is the retirement point and 𝑊𝑢 (𝑧) is the outside option.

C.4 Labor market equilibrium

This subsection sets up the problems for firms and workers in the directed search market.

Vacant firm’s problem. When the aggregate state is 𝑧, observing a menu of submarket (𝑊0(𝑧), 𝜃(𝑧)), firms
simultaneously choose whether or not to create vacancies and where to locate them. The firm’s expected
benefit of creating a vacancy in submarket 𝑊0(𝑧) is the product of job filling probability 𝑞 (𝜃(𝑧)), and the
expected value of hiring a worker is 𝐹 (𝑊0(𝑧), 𝑧). 𝑘 is the cost of posting vacancies per unit of time. We assume
that it’s a constant across all aggregate states. In the equilibrium, only a subset of markets (𝑊0(𝑧), 𝜃(𝑧)) open,
for those what do open, the tightness 𝜃(𝑧) is positive and consistent with the firm free entry equilibrium
outcome if and only if

𝑘 = 𝑞 (𝜃(𝑧)) 𝐹 (𝑊0(𝑧), 𝑧) = 𝜉 (𝜃(𝑧))−𝛼 𝐹 (𝑊0(𝑧), 𝑧) (30)
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From the firm’s free entry condition (30), for the submarket 𝑊0(𝑧) that opens, the corresponding market
tightness is

𝜃 (𝑊0(𝑧), 𝑧) =
(
𝜉𝐹 (𝑊0(𝑧), 𝑧)

𝑘

) 1
𝛼

It is obvious that the market tightness 𝜃 (𝑊0(𝑧)) moves in the same direction as the firm’s payoff 𝐹 (𝑊0)
moves with the promised utility 𝑊0.

Unemployed worker’s problem. For an unemployed worker, 𝑏 is the unemployment benefit flow which
we also assume to be constant across all aggregate states. At aggregate state 𝑧, any unemployed worker will
take (𝑊0(𝑧), 𝜃 (𝑧)) menu as given. His search decision is to choose which submarket 𝑊0(𝑧) to visit. If he
visits submarket 𝑊0(𝑧), his job finding probability is 𝑝 (𝜃). If he succeeds, he enters in a new employment
relationship which gives him the lifetime utility 𝑊0(𝑧). Otherwise he stays unemployed. The expected utility
for an individual unemployed worker is 𝑊𝑢,𝑡(𝑧).

𝑊𝑢,𝑡(𝑧) = max
𝑋(𝑧),𝑋(𝑧𝑐 )

𝑟𝑢(𝑏)𝑑𝑡

+ 𝑒−𝑟𝑑𝑡[(1 − 𝜆𝑧(𝑧)𝑑𝑡)
[ (

1 − 𝑝 (𝜃 (𝑊0(𝑧), 𝑧)) 𝑑𝑡
)
𝑊𝑢,𝑡+𝑑𝑡(𝑧) + 𝑝 (𝜃 (𝑊0(𝑧), 𝑧)) 𝑑𝑡𝑊0(𝑧)

]
+ 𝜆𝑧(𝑧)𝑑𝑡

[ (
1 − 𝑝 (𝜃 (𝑊0(𝑧𝑐), 𝑧𝑐)) 𝑑𝑡) 𝑊𝑢,𝑡+𝑑𝑡(𝑧𝑐) + 𝑝 (𝜃 (𝑊0(𝑧𝑐), 𝑧𝑐)) 𝑑𝑡𝑊0(𝑧𝑐)

]] (31)

where 𝑝(𝜃) is endogenized by

𝑝(𝜃(𝑊0(𝑧), 𝑧)) = 𝜉

(
𝜉𝐹 (𝑊0(𝑧), 𝑧)

𝑘

) 1−𝛼
𝛼

Denote the policy function that solves optimization problem (31) to be 𝑊 ∗
0 (𝑧). Note here we refine the

equilibrium to be block recursive equilibrium, the worker does not need to care about the unemployment
rate, or any other distributional variables in this economy.

(𝑟 + 𝜆𝑧)𝑊𝑢(𝑧) = 𝑟𝑢(𝑏) + 𝜆𝑧𝑊𝑢(𝑧𝑐) + 𝑝 (Θ (𝑊0(𝑧))) (𝑊0(𝑧) −𝑊𝑢(𝑧))

(𝑟 + 𝜆𝑧𝑐 )𝑊𝑢(𝑧𝑐) = 𝑟𝑢(𝑏) + 𝜆𝑧𝑐𝑊𝑢(𝑧) + 𝑝 (Θ (𝑊0(𝑧𝑐))) (𝑊0(𝑧𝑐) −𝑊𝑢(𝑧𝑐))

Distribution of workers. The evolution of the distribution of workers’ promised utilities can be summa-
rized by the Kolmogorov forward equation (KFE). Let 𝐺(𝑊, 𝑧) denote the density function of an employed
worker’s promised utility 𝑊 and aggregate state 𝑧. Let 𝑢(𝑧) denote the measure of unemployed workers. For
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simplicity, we suppress the argument 𝑡 in the density function. The KFE equation follows

𝜕𝐺 (𝑊, 𝑧)
𝜕𝑡

= − 𝜕

𝜕𝑊

[ [
𝑟
(
𝑊𝑡 − 𝑢 (𝐶𝑡) + 𝜙 (𝐴𝑡)

) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊𝑡) − 𝜆𝑧 (𝑧)Ψ𝑧,𝑡
]
𝐺 (𝑊, 𝑧)]

+ 1
2

𝜕2

𝜕𝑊2

[(
𝑟𝜙′ (𝐴)

𝑧

)2

𝜎2𝐺 (𝑊, 𝑧)
]

− 𝜆𝑥𝐺 (𝑊, 𝑧) + [ (
1 − 𝜑′ (𝑊, 𝑧)) 𝐺 (

𝑊 − 𝜑 (𝑊, 𝑧) , 𝑧) − 𝐺 (𝑊, 𝑧)] 𝜆𝑧 (𝑧)

where 𝜑 (𝑊, 𝑧) is defined by the equivalence,

𝑤 + 𝜓 (𝑤) = 𝑊 =⇒ 𝑤 = 𝑊 − 𝜑 (𝑊)

The law of motion for the measure of unemployed workers is

𝑑𝑢(𝑧) = 𝜆𝑥𝑑𝑡 (1 − 𝑢(𝑧)) − (
𝑝(𝜃(𝑧))𝑑𝑡) 𝑢(𝑧).

C.5 Dynamic result

The equilibrium result of contracting problem is summarized by Figure 14. The red curves correspond to
optimal contract result in lower aggregate productivity level and the blue curves correspond to that in higher
aggregate productivity level. Figure 14a shows that firms earn more profit when aggregate productivity
improves. The scatters denote the submarkets that unemployed workers choose to visit and workers will
collectively choose a market that promises higher utility at the higher aggregate state. Figure 14b plots
the exposure of worker’s promised utility to the aggregate productivity shock. When the aggregate state
improves, the worker’s promised utility will increase. Figure 14c shows that worker’s consumption plan
is also improved when the good productivity shock arrives. Figure 14d confirms that worker’s effort is
procyclical– the substitution effect dominates the income effect.

D. Computation algorithm

D.1 Optimal contract in steady state

In order to compute the optimal contract in the steady state, we use iterate-and-update method. We first
guess the outside option 𝑊𝑢 , the slope of profit function at the lower bound 𝐹𝑝 , the promised utility at the
retirement point𝑊𝑟 simultaneously. The individual worker takes𝑊𝑢 , 𝐹𝑝 ,𝑊𝑟 as given and the optimal contract
𝐹 (𝑊) can be obtained by solving the ODE using implicit method as shown below. Given the contracting state
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Figure 14: Dynamic model optimal contract

space 𝑊 ∈ [𝑊𝑢 ,𝑊𝑟] and boundary value conditions 𝐹′(𝑊𝑢) = 𝐹𝑝 , 𝐹(𝑊𝑟) = 𝐹𝑅(𝑊𝑟), we can numerically solve
the HJB equation

(𝑟 + 𝜆𝑥) 𝐹 (𝑊) = max
𝐴,𝐶

𝑟(𝑧𝐴 − 𝐶) + 𝐹′ (𝑊) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 −𝑊)]

+ 1
2𝐹

′′ (𝑊)
(
𝑟𝜙′ (𝐴) 𝜎𝐵

𝑧

)2

We use the retirement profit function and its policy functions 𝐴 = 0, 𝐶 = 𝑢−1(𝑊 − 𝜆𝑥
𝑟 (𝑊𝑢 −𝑊)) as the initial

guess. Denote

𝜌 = 𝑟 + 𝜆𝑥 , 𝐺 = 𝑟(𝑧𝐴 − 𝐶), 𝑀𝑈 = 𝑟(𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − (𝑊𝑢 −𝑊)𝜆𝑥 , 𝑆 =
𝑟𝜙′ (𝐴) 𝜎𝐵

𝑧

HJB equation can be approximated by the finite difference equation, noted that we adopt the upwind
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scheme to work with the forward/backward approximation.

𝜌𝐹𝑖 = 𝐺𝑖 + 𝐹𝑖+1 − 𝐹𝑖
Δ𝑖

𝑀𝑈+
𝑖 − 𝐹𝑖 − 𝐹𝑖−1

Δ𝑖
𝑀𝑈−

𝑖 + 𝐹𝑖+1 − 𝐹𝑖 − 𝐹𝑖 + 𝐹𝑖−1

Δ2
𝑖

𝑆2
𝑖

2

Where “+” on subscript is to take positive values and “-” on subscript is to take negative absolute values.
Collect terms we get,

𝜌𝐹𝑖 = 𝐺𝑖 +
(
𝑀𝑈−

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

)
𝐹𝑖−1 +

(
−𝑀𝑈+

𝑖

Δ𝑖
− 𝑀𝑈−

𝑖

Δ𝑖
− 𝑆2

𝑖

Δ2
𝑖

)
𝐹𝑖 +

(
𝑀𝑈+

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

)
𝐹𝑖+1

Denote

𝑥𝑖 =
𝑀𝑈−

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

, 𝑦𝑖 = −𝑀𝑈+
𝑖

Δ𝑖
− 𝑀𝑈−

𝑖

Δ𝑖
− 𝑆2

𝑖

Δ2
𝑖

, 𝑧𝑖 =
𝑀𝑈+

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

Denote matrix A as the intensity matrix or transition matrix,

A ≡



𝑦1 𝑧1 0 . . . 0 0 0
𝑥2 𝑦2 𝑧2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 𝑥𝑁−1 𝑦𝑁−1 𝑧𝑁−1

0 0 0 . . . 0 𝑥𝑁 𝑦𝑁


Then the HJB equation can be written into

𝜌F = G +AF

where

F =


𝐹1
...

𝐹𝑁

 , G =


𝐺1
...

𝐺𝑁

 .
After rearrange the terms,

(𝜌I −A)F = G.

Denote B = 𝜌I −A, except with the “dirty fix” on 1-st and N-th row to incorporate the boundary conditions.
Accordingly we need to fix vector G on both ends to incorporate the boundary conditions. where 𝐺1 =

𝐹𝑝 , 𝐺𝑁 = 𝐹𝑅(𝑊𝑟). The boundary conditions are embedded in the first and last row of equation.
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B ≡



− 1
Δ1

1
Δ1

0 . . . 0 0 0
−𝑥2 𝜌 − 𝑦2 −𝑧2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −𝑥𝑁−1 𝜌 − 𝑦𝑁−1 −𝑧𝑁−1

0 0 0 . . . 0 0 1


.

The HJB equation becomes
B · F = G.

Then we can solve for F ,
F = B−1G.

The updated 𝐹(𝑊) can be used to solve the updated policy functions 𝐴 and 𝐶 from the optimality
conditions

𝑧𝑡 + 𝑟𝐹′ (𝑊𝑡)𝜙′ (𝐴𝑡) + 𝑟2𝐹′′ (𝑊𝑡)
( 𝜎
𝑧

)2
𝜙′ (𝐴𝑡)𝜙′′ (𝐴𝑡) = 0

− 1 − 𝑟𝐹′ (𝑊𝑡) 𝑢′ (𝐶𝑡) = 0

From this optimality condition, the updated 𝐶, 𝐴 and 𝜓 as functions of 𝑊 are known. Then we can use
these policy functions as the new guess and perform the iteration until 𝐹(𝑊) converges.

Next, we update the value of 𝑊𝑢 , 𝐹𝑝 ,𝑊𝑟 simultaneously. We can also update 𝑊𝑢 through HJB equation
(11),

𝑊𝑢 = max
𝑊0∈𝒲

1
𝑟

[
𝑟𝑢 (𝑏) + 𝑝 (Θ (𝑊0)) (𝑊0 −𝑊𝑢)

]
To maximize the expected search value, individual worker determines which is the optimal submarket

to visit, denote as 𝑊 ∗
0 . For both computation efficiency and accuracy concern, we adopt the Golden Search

method in finding the maximized searching value of the worker.

We can update the value of 𝐹𝑝 through the smooth pasting condition (8),

𝐹𝑝 =
𝐹(𝑊𝑢) − 𝐹𝑅(𝜆𝑥𝑊𝑢

𝑟+𝜆𝑥
)

𝑊𝑢 − 𝜆𝑥
𝑟+𝜆𝑥

𝑊𝑢

We can update the value of 𝑊𝑟 by the smooth pasting condition at the upper bound (7),

𝐹′(𝑊𝑟) = 𝐹′
𝑅(𝑊𝑟) =

−
𝑟𝑢−1

[
𝑊 − 𝜆𝑥

𝑟 (𝑊𝑢 −𝑊)
]

𝑟 + 𝜆𝑥


′

= − 1

𝑢′
[
𝑊𝑟 − 𝜆𝑥

𝑟 (𝑊𝑢 −𝑊𝑟)
]
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We can implicitly solve and update 𝑊𝑟 .

Then we can perform the iterate-and-update strategy until 𝑊𝑢 , 𝐹𝑝 ,𝑊𝑟 all respectively converge.

D.2 Worker’s distribution in steady state

In steady state, unemployment worker measure is given by

𝑢 =
𝜆𝑥

𝜆𝑥 + 𝑝 (Θ(𝑋))

We use 𝑔(𝑊, 𝑡) to denote the measure of workers over their promised utilities.

∫ 𝑊𝑟

𝑊𝑢

𝑔(𝑊, 𝑡)𝑑𝑊 = 1 − 𝑢

The Fokker-Planck equation or KFE describes the distribution transition for all workers,

𝜕𝑔(𝑊, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑊

[ (
𝑟(𝑊𝑡 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥)) 𝑔(𝑊, 𝑡)]

+ 1
2

𝜕2

𝜕𝑊2

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊, 𝑡)
]
− 𝜆𝑥 𝑔(𝑊, 𝑡)

Except for workers with promised utility𝑊0, the distribution transition has an additional injection of new
workers, denoted as 𝐼(𝑊0 , 𝑡),

𝜕𝑔(𝑊, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑊

[ (
𝑟(𝑊𝑡 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢 −𝑊𝑡)𝜆𝑥)) 𝑔(𝑊, 𝑡)]

+ 1
2

𝜕2

𝜕𝑊2

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊, 𝑡)
]
− 𝜆𝑥 𝑔(𝑊, 𝑡) + 𝐼(𝑊0 , 𝑡)

where 𝐼(𝑊0 , 𝑡) = 𝑝𝑑𝑡 𝑢. And the boundary conditions are: (a) a reflecting lower boundary at 𝑊 = 𝑊𝑢 and (b)
an absorbing upper boundary at 𝑊 = 𝑊𝑟 :

− [ (
𝑟(𝑊𝑢 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)))) 𝑔(𝑊𝑢 , 𝑡)

] + 1
2

𝜕

𝜕𝑊

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊𝑢 , 𝑡)
]
= 0

𝑔(𝑊𝑟 , 𝑡) =
∫ 𝑡

0
𝐽(𝑊𝑟 , 𝑡)𝑑𝑡
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The stopping/exit rate through upper boundary 𝑊 = 𝑊𝑟 per unit of time is 𝐽(𝑊𝑟 , 𝑡)

𝐽(𝑊𝑟 , 𝑡) = − [ (
𝑟(𝑊𝑟 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢 −𝑊𝑟)𝜆𝑥)

)
𝑔(𝑊𝑟 , 𝑡)

] + 1
2

𝜕

𝜕𝑊

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊𝑟 , 𝑡)
]

Now we perform finite difference to compute 𝑔(𝑊, 𝑡). Notation is the same as in the last subsection.

𝑀𝑈 = 𝑟(𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − (𝑊𝑢 −𝑊)𝜆𝑥 , 𝑆 =
𝑟𝜙′ (𝐴) 𝜎𝐵

𝑧

KFE can then be written into

𝜕𝑔(𝑊, 𝑡)
𝜕𝑡

= −𝜕(𝑀𝑈(𝑊)𝑔(𝑊))
𝜕𝑊

+ 1
2
𝜕2(𝑆2(𝑊)𝑔(𝑊))

𝜕𝑊2 − 𝜆𝑥 𝑔(𝑊)

The KFE for stationary probability density function can be approximated by finite difference equation.
Again we use upwind scheme and implicit method,

𝑔𝑖 − 𝑔0
𝑖

Δ𝑡
= −

[
𝑔𝑖𝑀𝑈+

𝑖 − 𝑔𝑖−1𝑀𝑈+
𝑖−1

Δ𝑖
+ 𝑔𝑖𝑀𝑈−

𝑖 − 𝑔𝑖+1𝑀𝑈−
𝑖+1

Δ𝑖

]
+ 𝑔𝑖+1𝑆2

𝑖+1 − 𝑔𝑖𝑆2
𝑖 − 𝑔𝑖𝑆2

𝑖 + 𝑔𝑖−1𝑆2
𝑖−1

2Δ2
𝑖

− 𝜆𝑥 𝑔𝑖

Collect terms we will get

𝑔𝑖 − 𝑔0
𝑖

Δ𝑡
=

(
𝑀𝑈+

𝑖−1
Δ𝑖

+ 𝑆2
𝑖−1

2Δ2
𝑖

)
𝑔𝑖−1 +

(
−𝑀𝑈+

𝑖

Δ𝑖
− 𝑀𝑈−

𝑖

Δ𝑖
− 𝑆2

𝑖

Δ2
𝑖

)
𝑔𝑖 +

(
𝑀𝑈−

𝑖+1
Δ𝑖

+ 𝑆2
𝑖+1

2Δ2
𝑖

)
𝑔𝑖+1 − 𝜆𝑥 𝑔𝑖

Adopt the same notations as in the last subsection,

𝑥𝑖 =
𝑀𝑈−

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

, 𝑦𝑖 = −𝑀𝑈+
𝑖

Δ𝑖
− 𝑀𝑈−

𝑖

Δ𝑖
− 𝑆2

𝑖

Δ2
𝑖

, 𝑧𝑖 =
𝑀𝑈+

𝑖

Δ𝑖
+ 𝑆2

𝑖

2Δ2
𝑖

Then the finite difference KFE becomes

𝑔𝑖 − 𝑔0
𝑖

Δ𝑡
= 𝑧𝑖−1𝑔𝑖−1 + 𝑦𝑖 𝑔𝑖 + 𝑥𝑖+1𝑔𝑖+1 − 𝜆𝑥 𝑔𝑖 (32)
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Notice that the adjoint matrix for transition matrix A from last subsection is

A𝑇 =



𝑦1 𝑥2 0 . . . 0 0 0
𝑧1 𝑦2 𝑥3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 𝑧𝑁−2 𝑦𝑁−1 𝑥𝑁
0 0 0 . . . 0 𝑧𝑁−1 𝑦𝑁


which coincides with the coefficient on the right hand side of (32). And the finite difference of KFE can be
vectorized into the following equation

g − g0 = A𝑇gΔ𝑡 − 𝜆𝑥gΔ𝑡

We can rearrange terms, [(1 + 𝜆𝑥Δ𝑡) I − Δ𝑡A𝑇
]
g = g0

With the exception that at grid 𝑊0, the KFE is

g − g0 = A𝑇Δ𝑡 − 𝜆𝑥gΔ𝑡 + 𝑝𝑑𝑡 𝑢

After collecting terms, [(1 + 𝜆𝑥Δ𝑡) I − Δ𝑡A𝑇
]
g = g0 + 𝑝𝑑𝑡 𝑢.

Denote D = (1 + 𝜆𝑥Δ𝑡) I − Δ𝑡A𝑇 , except with the fix on 1-st and N-th row to incorporate the boundary
conditions.

For the reflective lower bound, the finite difference gives us

𝜕𝑔1

𝜕𝑡
=

(
𝜇−

2
Δ

+ 𝑆2
2

2Δ2

)
𝑔2 −

(
𝜇+

1
Δ

+ 𝑆2
1

2Δ2

)
𝑔1 − 𝜆𝑥 𝑔1 = 0

Accordingly, we modify the first row of intensity matrix D,

𝑥1 = 0, 𝑦1 =
𝜇−

1
Δ

+ 𝑆2
1

2Δ2 − 𝜇+
1
Δ

− 𝑆2
1

Δ2 = −𝜇+
1
Δ

− 𝑆2
1

2Δ2 , 𝑥2 =
𝜇−

2
Δ

+ 𝑆2
2

2Δ2

For the absorbing upper bound, we follow the practice introduced by (Gabaix, 2009).(
𝑔𝑁−1 − 𝑔0

𝑁−1
)

Δ𝑡
= 𝑔𝑁−2

(
𝜇+
𝑁−2
Δ

+ 1
2
𝑆2
𝑁−2
Δ2

)
+ 𝑔𝑁−1

(
−𝜇+

𝑁−1
Δ

− 𝜇−
𝑁−1
Δ

− 𝑆2
𝑁−1
Δ2

)
− 𝜆𝑥 𝑔𝑁−1
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(
𝑔𝑁 − 𝑔0

𝑁

)
Δ𝑡

= 𝑔𝑁−1

(
𝜇+
𝑁−1
Δ

+ 1
2
𝑆2
𝑁−1
Δ2

)
− 𝜆𝑥 𝑔𝑁

We modify the last and second to last row of intensity matrix D,

𝑧𝑁−1 =
𝜇+
𝑁−1
Δ

+ 1
2
𝑆2
𝑁−1
Δ2 , 𝑧𝑁−2 =

𝜇+
𝑁−2
Δ

+ 1
2
𝑆2
𝑁−2
Δ2 , 𝑦𝑁−1 = −𝜇+

𝑁−1
Δ

− 𝜇−
𝑁−1
Δ

− 𝑆2
𝑁−1
Δ2 , 𝑥𝑁 = 0

The finite difference scheme can be vectorized into the following equation,

D · g = g0

where g0 is the old density distribution, except that at the lower bound we modify to incorporate the boundary
condition,

𝑔0
1 = 0

Besides, at 𝑊 = 𝑊0, 𝑔0
𝑊0

= 𝑔0
𝑊0

+ 𝑝𝑑𝑡 𝑢. Then we can solve for g.

g = D−1g0 (33)

Obviously, the stationary distribution function can be numerically solved running forward by (33), till g
converges.

D.3 Optimal contract in dynamic setting

We first guess the unemployment value 𝑊𝑢,𝐺 ,𝑊𝑢,𝐵, retirement continuation value 𝑊𝑟,𝐺 ,𝑊𝑟,𝐵 and 𝐹𝑝,𝐺 , 𝐹𝑝,𝐵.
Where 𝐹𝑝,𝐺 , 𝐹𝑝,𝐵 are the first order derivatives of firm profit function at the lower bound 𝑊𝑢 . We also guess
the value functions under two aggregate states to be 𝐹(𝑊𝑧 , 𝑧) and 𝐹(𝑊𝑧𝑐 , 𝑧𝑐). Given the contracting state space
𝑊𝑧 ∈ [𝑊𝑢,𝐵 ,𝑊𝑟,𝐵] and boundary value conditions, we can numerically solve the HJB equation for aggregate
state 𝑧 = 𝑧𝐵,

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧)) 𝐹 (𝑊, 𝑧) = max
𝐴,𝐶,Ψ𝑧

𝑧𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧)𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐)

+ 𝐹𝑊 (𝑊, 𝑧) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧) −𝑊) − 𝜆𝑧 (𝑧)Ψ𝑧

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧)
(
𝜙′ (𝐴)

𝑧

)2

𝜎2

Given the contracting state space 𝑊 ∈ [𝑊𝑢,𝐺 ,𝑊𝑟,𝐺] and boundary value conditions, we can numerically
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solve the coupled HJB equation for 𝑧𝑐 = 𝑧𝐺,

(𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧𝑐)) 𝐹 (𝑊, 𝑧𝑐) = max
𝐴,𝐶,Ψ𝑧𝑐

𝑧𝑐𝑡𝐴 − 𝐶𝑡 + 𝜆𝑧(𝑧𝑐)𝐹 (𝑊 +Ψ𝑧𝑐 , 𝑧)

+ 𝐹𝑊 (𝑊, 𝑧𝑐) [𝑟 (
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − 𝜆𝑥 (𝑊𝑢 (𝑧𝑐) −𝑊) − 𝜆𝑧 (𝑧𝑐)Ψ𝑧𝑐

]
+ 1

2𝐹𝑊𝑊 (𝑊, 𝑧𝑐)
(
𝜙′ (𝐴)
𝑧𝑐

)2

𝜎2

We will demonstrate the algorithm of solving the HJB equation by looking at HJB equation associated
with state 𝑧, and the HJB equation associated with state 𝑧𝑐 can be solved likewise. Denote

𝜌 = 𝑟 + 𝜆𝑥 + 𝜆𝑧(𝑧), 𝐺 = 𝑧𝐴 − 𝐶 + 𝜆𝑧(𝑧)𝐹 (𝑊 +Ψ𝑧 , 𝑧𝑐)

𝑀𝑈 = 𝑟
(
𝑊 − 𝑢 (𝐶) + 𝜙 (𝐴)) − (𝑊𝑢(𝑧) −𝑊)𝜆𝑥 − 𝜆𝑧 (𝑧)Ψ𝑧 , 𝑆 =

𝜙′ (𝐴) 𝜎
𝑧

HJB equation for 𝐹(𝑊, 𝑧) can be approximated by finite difference equation

𝜌𝐹𝑖 = 𝑔𝑖 + 𝐹𝑖+1 − 𝐹𝑖
Δ𝑖

𝑀𝑈+
𝑖 − 𝐹𝑖 − 𝐹𝑖−1

Δ𝑖
𝑀𝑈−

𝑖 + 𝐹𝑖+1 − 𝐹𝑖 − 𝐹𝑖 + 𝐹𝑖−1

Δ2
𝑖

𝑆2
𝑖

2

We can solve 𝐹(𝑊𝑧 , 𝑧) from this finite difference equation using exactly the same procedure we introduced
in the steady state model. Similarly we can update 𝐹(𝑊𝑧𝑐 , 𝑧𝑐). The updated 𝐹(𝑊𝑧 , 𝑧) and 𝐹(𝑊𝑧𝑐 , 𝑧𝑐) can be
used to solve the updated policy functions 𝐴, 𝐶 and 𝜓𝑧 from the optimality conditions

𝑧𝑡 + 𝑟𝐹′ (𝑊𝑧 , 𝑧)𝜙′ (𝐴𝑡) + 𝑟2𝐹′′ (𝑊, 𝑧)
( 𝜎
𝑧

)2
𝜙′ (𝐴𝑡)𝜙′′ (𝐴𝑡) = 0

− 1 − 𝑟𝐹′ (𝑊, 𝑧) 𝑢′ (𝐶𝑡) = 0

𝐹′(𝑊𝑧 , 𝑧) = 𝐹′(𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐)

Now we update the value of 𝑊𝑢,𝑧 ,𝑊𝑢,𝑧𝑐 , 𝐹𝑝,𝑧 , 𝐹𝑝,𝑧𝑐 ,𝑊𝑟,𝑧 ,𝑊𝑟,𝑧𝑐 simultaneously. The procedure is similar
to that in the Steady State computation. We do this iteratively until everything converges.

D.4 Dynamic model worker distribution

Denote 𝑔(𝑊𝑧 , 𝑧, 𝑡) as the measure of worker distribution over their promised utilities at aggregate state 𝑧, and
𝑔(𝑊𝑧𝑐 , 𝑧𝑐 , 𝑡) the measure of distribution at aggregate state 𝑧𝑐 .

∫ 𝑊𝑟 (𝑧)

𝑊𝑢 (𝑧)
𝑔(𝑊𝑧 , 𝑧, 𝑡)𝑑𝑊 = 1 − 𝑢(𝑧)
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The KFE that describes the distribution transition for all 𝑊 at aggregate state 𝑧 is

𝜕𝑔(𝑊𝑧 , 𝑧, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑊𝑧

[ (
𝑟(𝑊𝑧 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢,𝑧 −𝑊𝑧)𝜆𝑥 − 𝜓𝑧,𝑡𝜆𝑧(𝑧))

)
𝑔(𝑊𝑧 , 𝑧, 𝑡)

]
+ 1

2
𝜕2

𝜕𝑊2
𝑧

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊𝑧 , 𝑧, 𝑡)
]
− 𝜆𝑥 𝑔(𝑊𝑧 , 𝑧, 𝑡)

At 𝑊0(𝑧), the distribution transition has an additional injection of new workers, denoted as 𝐼(𝑊0(𝑧), 𝑡),

𝜕𝑔(𝑊𝑧 , 𝑧, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑊𝑧

[ (
𝑟(𝑊𝑧 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢,𝑧 −𝑊𝑧)𝜆𝑥 − 𝜓𝑧,𝑡𝜆𝑧(𝑧)

)
𝑔(𝑊𝑧 , 𝑧, 𝑡)

]
+ 1

2
𝜕2

𝜕𝑊2
𝑧

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎

)2

𝑔(𝑊𝑧 , 𝑧, 𝑡)
]
− 𝜆𝑥 𝑔(𝑊𝑧 , 𝑧, 𝑡) + 𝐼(𝑊0(𝑧), 𝑧, 𝑡)

The boundary conditions are: reflecting lower boundary at 𝑊𝑧 = 𝑊𝑢,𝑧 ,

− [ (
𝑟(𝑊𝑢,𝑧 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)))

)
𝑔(𝑊𝑢,𝑧 , 𝑧, 𝑡)

] + 1
2

𝜕

𝜕𝑊𝑧

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎𝐵

)2

𝑔(𝑊𝑢,𝑧 , 𝑧, 𝑡)
]
= 0

and absorbing upper boundary at 𝑊𝑧 = 𝑊𝑟,𝑧 .

𝑔(𝑊𝑟,𝑧 , 𝑧, 𝑡) =
∫ 𝑡

0
𝐽(𝑊𝑟,𝑧 , 𝑧, 𝑡)𝑑𝑡

The stopping/exit rate through upper boundary 𝑊𝑧 = 𝑊𝑟,𝑧 per unit of time is 𝐽(𝑊𝑟,𝑧 , 𝑧, 𝑡).

𝐽(𝑊𝑟,𝑧 , 𝑧, 𝑡) = − [ (
𝑟(𝑊𝑟,𝑧 − 𝑢(𝐶𝑡) + 𝜙(𝐴𝑡)) − (𝑊𝑢,𝑧 −𝑊𝑟,𝑧)𝜆𝑥)) 𝑔(𝑊𝑟,𝑧 , 𝑧, 𝑡)

]
+ 1

2
𝜕

𝜕𝑊𝑧

[(
𝑟
𝜙′ (𝐴𝑡)

𝑧𝑡
𝜎

)2

𝑔(𝑊𝑟,𝑧 , 𝑧, 𝑡)
]

If the aggregate productivity shock arrives, the aggregate state will switch from 𝑧 to 𝑧𝑐 . The measure of
distribution under the new aggregate state instantly change to 𝑔(𝑊𝑧𝑐 , 𝑧𝑐 , 𝑡), which is transformed from the
former distribution measure 𝑔(𝑊𝑧 , 𝑧, 𝑡).

𝑔(𝑊𝑧𝑐 , 𝑧𝑐 , 𝑡) = 𝑔(𝑊𝑧 + 𝜓𝑧 , 𝑧𝑐 , 𝑡) = 𝑔(𝑊𝑧 , 𝑧, 𝑡)

The rest finite difference procedure resembles that in the steady state model computation, we will omit
the details for the sake of simplicity.
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E. Calibration and estimation

E.1 Stochastic aggregate productivity

The labor productivity data is from the U.S. Bureau of Labor Statistics. The labor productivity data are
measured as the percentage change from the previous quarter at an annual rate, and the quarterly percentage
change is approximately the annual percentage change divided by four. The sample period is from 1994 Q1
to 2019 Q4. To make the model comparable with the data, the process we will be looking at is the percentage
deviation from labor productivity in steady state, which we normalize to be 1. To simplify the notation,
rewrite 𝜆𝑧 (𝑧𝐻) = 𝜆𝑧𝐻 and 𝜆𝑧 (𝑧𝐿) = 𝜆𝑧𝐿. Define Δ𝑧𝑖 = 𝑧𝑖−E[𝑧]

E[𝑧] , 𝑖 ∈ {𝐿, 𝐻}. We assume the percentage deviation
to be symmetric, Δ𝑧𝐻 = −Δ𝑧𝐿. We then match the moments of process {Δ𝑧} with the data. The moments
include: the variance var[Δ𝑧], the autocorrelation E[Δ𝑧𝑡Δ𝑧𝑡+1] and the stationary distribution [𝜋Δ𝑧𝐿 ,𝜋Δ𝑧𝐻].
Given the productivity shock process is a Markov process, the model implied {Δ𝑧} moments are

E[Δ𝑧] = Δ𝑧𝐿𝜆𝑧𝐻 + Δ𝑧𝐻𝜆𝑧𝐿

𝜆𝑧𝐿 + 𝜆𝑧𝐻
, std[Δ𝑧] =

√
𝜆𝑧𝐿𝜆𝑧𝐻(Δ𝑧𝐿 − Δ𝑧𝐻)2

(𝜆𝐿 + 𝜆𝐻)2

corr[Δ𝑧𝑡Δ𝑧𝑡+1] = E[Δ𝑧𝑡Δ𝑧𝑡+1] − E[Δ𝑧]2
𝑣𝑎𝑟[Δ𝑧] = 1 − 𝜆𝑧𝐿 − 𝜆𝑧𝐻

𝜋Δ𝑧𝐻 =
𝜆𝑧𝐿

𝜆𝑧𝐿 + 𝜆𝑧𝐻
, 𝜋Δ𝑧𝐿 =

𝜆𝑧𝐻

𝜆𝑧𝐿 + 𝜆𝑧𝐻

The stationary distribution is calibrated by looking at the monthly data of NBER based Recession Indicators
for the United States. The probability 𝜋Δ𝑧𝐿 is calibrated by calculating the proportion of the recession periods
in the whole sample period. Since we assume Δ𝑧𝐻 = −Δ𝑧𝐿 = Δ𝑧, collectively, Δ𝑧,𝜆𝑧𝐿 ,𝜆𝑧𝐻 can be calibrated
by the following equation system

𝜆𝑧𝐿 =
1 − 𝜋𝐿

𝜋𝐿
𝜆𝑧𝐻 , Δ𝑧 =

√
[std(Δ𝑧)]2

4𝜋𝐿𝜋𝐻
, 1 − 𝜆𝑧𝐿 − 𝜆𝑧𝐻 = corr[Δ𝑧𝑡Δ𝑧𝑡+1]

The labor productivity time series suggests that 𝜋Δ𝑧𝐵 = 0.141. Following Shimer (2005), we estimate
std[Δ𝑧] = 0.02, E[Δ𝑧𝑡Δ𝑧𝑡+1] = 0.878. Then we can get the value of four parameters Δ𝑧𝐿 = −2.87%, Δ𝑧𝐻 =

2.87%, 𝜆𝑧𝐿 = 0.105, 𝜆𝑧𝐻 = 0.017.
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E.2 Alternative calibration strategy

For the robustness check, we also calibrate the model to match the PSID regular wage residual. The iden-
tification assumption is that firms do not possess more information than econometricians, and the only
unobservable factor that causes the variance in the wage residual is the variance of the idiosyncratic factor.
Using this strictest calibration strategy, the standard deviation of real wage residual is 0.242.

To recover the regular wage residual, we regress the hourly wage on worker-job observables. The
regression results are in Table 5.

Dependent asinh(wage)
Method OLS OLS FE FE FE FE

Regressors (7) (8) (9) (10) (11) (12)

i.worker
i.match
i.year

i.industry
i.occupation

i.y# i.ind# i.occ

Observations 60411 60300 56825 56710 40088 39910
Std of residual .525 .511 .321 .315 .247 .242

Table 5: Regression table of regular wage residual

We use the regression results in Column (12) to gauge our alternative calibration, and the inferred 𝜎 is
1.1. The parameterization will be adjusted accordingly and are shown in Table 6.

Parameter Description First Best Alternative Target

𝑘 vacancy posting cost 0.203 0.083 market tightness 𝜃 = 1
𝜒1 effort disutility 0.183 0.166 aggregate output equals 1
𝜎 idiosyn. volatility 0 1.1 micro evidence

Table 6: Parameters used for alternative calibration

The simulation results are summarized in the Table 7. We can see that even with this most conservative
calibration strategy, the results still hold qualitatively. The unemployment volatility is higher in the economy
with moral hazard. The wage dispersion is counter-cyclical when we consider the moral hazard problem.
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Unemployment volatility std(𝑢) Wage dispersion std
[
asinh

( 𝐶
𝐴

) ]
Data 0.190 corr(GDP, wage disp.) -0.1550

No moral hazard 0.016 wage disp.|𝑧𝐿 0.398

Alternative calibration 0.0181 wage disp.|𝑧𝐻 0.379

Table 7: Unemployment volatility and wage dispersion under alternative calibration
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