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Abstract

What is the role of production networks in inducing self-fulfilling business cycles? To answer
this question, we build a multisector business cycle model with input-output linkages and credit
constraints. Theoretically, we show that a single aggregate financial multiplier is sufficient to char-
acterize the equilibrium determinacy, which hinges on the production network structure. Par-
ticularly, tightening credit constraints in upstream sector is more likely to generate self-fulfilling
equilibria. Quantitatively, we evaluate the likelihood of indeterminate equilibria in the US from
1998 to 2020, and we find the economy is more susceptible to self-fulfilling fluctuations after the
Great Recession.
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1. INTRODUCTION

Since the Great Recession, the role of financial frictions in shaping business cycle fluctuations has
become a central theme in economics. It is well known that financial shocks themselves can be im-
portant driving forces (see, among others, Jermann and Quadrini (2012), Eggertsson and Krugman
(2012), and Guerrieri and Lorenzoni (2017)). More surprisingly, severer financial frictions may also
give rise to self-fulfilling business cycles (Liu and Wang (2014)). On the other hand, a rapidly grow-
ing literature on production networks (Gabaix (2011), Acemoglu, Akcigit, andKerr (2016), Baqaee and
Farhi (2020)) has pointed out that sectoral heterogeneities and input-output linkages are important in
propagating local shocks. The goal of this paper is to understand the effects of the joint presence of
credit constraints and production networks in inducing self-fulfilling business cycles.

We build a continuous-time multisector business cycle model with input-output linkages and
credit constraints. In each production sector, a continuum of firms has access to a constant-return-
to-scale technology that uses other sectors’ outputs as intermediate goods, but they possess hetero-
geneous productivities and are subject to working capital constraints and fixed operational costs. In
the absence of credit constraints, only the most productive firms operate. When such constraints are
present, all firms with productivities higher than a threshold operate. Crucially, the credit constraint
depends on the aggregate economic conditions in an endogenous way: an increase in economy-wide
TFP not only directly improves production efficiency but also increases firms’ equity value, which in
turn relaxes their credit constraints. What follows is a reduction of misallocation: the cutoff produc-
tivity increases, resources shift towards more productive firms, and misallocation is mitigated. This
indirect channel can be viewed as a particular financial multiplier. In addition, when firms are inter-
connected across sectors, an expansion in one sector boosts the demand for goods from other sectors,
which in turn relaxes the credit constraints in other sectors. This interaction between the general equi-
librium feedback effects due to trade linkages and the financial multiplier caused by credit constraints
can induce sufficient amplification that makes the aggregate production function appear to display
increasing returns to scale.

Our first result is an exact analytical characterization of the aggregate financial multiplier with
dynamic linkage across sectors. We show that the rise of self-fulfilling business cycles hinges on the
size of aggregate financial multiplier. Holding primary input factors fixed, the direct effect on ag-
gregate output of a TFP shock in one sector equals its cost-based Domar weight, which is generically
larger than the revenue-based Domar weight. These two Domar weights coincide only if the financial
friction vanishes, in which case the familiar Hulten’s theorem applies. Indirectly, the allocation effi-
ciency in all sectors is improved. The indirect effects are governed by the magnitude of the fixed costs
and productivity dispersion in each sector. The aggregate financial multiplier therefore also nests the
input-output multiplier, which is greater than one.
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Our second result involves the weight and the architecture of the production network and reveals
their impact on self-fulfilling equilibrium. We show that the financial multiplier is non-monotonic
in both weight and the architecture of the production network. First, consider a case in which all
sectors are symmetric. The financial multiplier displays a U-shape in intermediate input share. The
rise of intermediate input share has two effects: a “size effect” and a “diluting effect”. The former
effect indicates that the sales of intermediate firms increase, and this tends to amplify the financial
multiplier as intermediate firms that are subject to the financial constraint expand. The latter effect
occurs because as sales expand, fixed operating costs become relatively less important, which damp-
ens the financial multiplier. The economy can be pushed into self-fulfilling cycles when either effect
is strong enough. On the other hand, we can vary the structure of the production network. The ag-
gregate financial multiplier again displays a U-shape in interconnection between sectors. We find
that the network structure has an important but ambiguous effect in inducing a self-fulfilling equilib-
rium, in the sense that making sectors more or less interconnected can either increase or decrease the
likelihood of economic indeterminacy.

Our third result demonstrates that tightening sector-specific credit constraints has heterogeneous
effects on inducing self-fulfilling business cycles depending on a sector’s position in the network.
In general, tightening a sector’s credit constraint leads to a larger aggregate financial multiplier and
hence a higher chance of self-fulfilling business cycles. However, the strength of this channel depends
on the relative importance of this sector in the economy. An upstream sector is more “critical”, and
the corresponding increase in the aggregate financial multiplier is more dramatic there. It follows
that tightening the financial constraints in these more critical sectors would more easily induce self-
fulfilling business cycles.

Quantitatively, we evaluate the likelihood of self-fulfilling business cycles in the US from 1998 to
2020. We show that the aggregate financial multiplier can be used as a sufficient statistic to describe
the endogenous risk in the economy: the sunspot fluctuations aremore likely to occurwhen it falls into
indeterminacy region. During the 2008 financial crisis, the aggregate financial multiplier is relatively
high and drives the economy to be more exposed to the sunspot risks.

Overall, our results highlight how the nature of interactions between the input-output linkages
and credit constraints shapes the aggregate self-fulfilling fluctuations.

Related Literature. To the best of our knowledge, our paper is the first to shed light on the role of
production networks in shaping self-fulfilling business cycles. Correspondingly, our paper most di-
rectly draws from and contributes to the literature on self-fulfilling equilibria in real business cycles.
Benhabib and Farmer (1994) first notes that increasing returns to scale can generate indeterminate
equilibria. Farmer and Guo (1994), Basu and Fernald (1995), and Basu and Fernald (1997) examine
the quantitative importance of such indeterminacy. To generate empirically plausible increasing re-
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turns, Galí (1993), Schmitt-Grohé (1997) and Wang and Wen (2008) resort to countercyclical markup,
Benhabib and Farmer (1996) and Benhabib and Nishimura (2012) turn to two-sector model with mild
within-sector externality, while Wen (1998) and Benhabib and Wen (2004) introduce variable capac-
ity into the discussion. We contribute to this research agenda by introducing a production network
that can endogenously amplify increasing returns. Our paper also complements to the literature on
expectation-driven self-fulfilling business cycles. A partial list includes Benhabib, Wang, and Wen
(2015), Chahrour and Gaballo (2017), and Acharya, Benhabib, and Huo (2021).

Our paper also belongs to the active recent research agenda on production networks. Following
the pioneering contribution of Long and Plosser (1983) on multisector real business cycles, Foerster,
Sarte, and Watson (2011), Gabaix (2011), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012),
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Acemoglu, Akcigit, and Kerr (2016), Atalay (2017),
Oberfield (2018), Baqaee (2018), Baqaee and Farhi (2018), Baqaee and Farhi (2019), Liu (2019), Al-
tinoglu (2020), Luo (2020), Bigio and La’o (2020), and Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021),
among others, enrich the theory and provide econometric evidence. Additionally, see Carvalho and
Tahbaz-Salehi (2019) for a comprehensive survey on production networks. We apply the insights and
tools developed by this body of work which mainly focuses on static models to the possibility of in-
determinate equilibria in RBC models.

The most related paper to ours is Liu and Wang (2014), which shows that financial frictions not
only amplify the cycles but can also generate self-fulfilling business cycles due to an endogenous ag-
gregation with increasing returns to scale. There are mainly three key differences between Liu and
Wang (2014) and our paper. First, the model in Liu and Wang (2014) considers production economy
without intermediate goods input, while our paper considers a more complicated production net-
work, treating Liu and Wang (2014) as a special case. That being said, the second most innovative
part of our paper is that we investigate the implications of the network structure in a multisector
model and the input-output structure is shown to shift the indeterminate region, i.e., the possibil-
ity region of endogenous cycles. Lastly, since our model builds a richer production structure which
allows for heterogeneous sectoral financial constraints, we are able to identify the key sector whose
financial condition is crucial for the stability of equilibrium.

The remainder of our paper is organized as follows. Section 2 introduces our basic theoretical
model. Section 3 presents our investigation of aggregate financial multiplier and self-fulfilling busi-
ness cycles when altering weight and architecture of the production network. Section 4 evaluates the
importance of sectors at different positions in the network in shaping self-fulfilling business cycles.
Section 5 quantitatively evaluates the likelihood of self-fulfilling business cycles. Section 6 concludes
the paper, while the Appendix contains all the proofs.
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2. MODEL

Time is continuous and indefinite. The economy is populated by a continuumof homogeneous house-
holds, a continuum of final-goods producers and 𝑁 continua of intermediate goods producers. All
intermediate goods producers in same sector are solely owned by one entrepreneur who is labeled by
𝑖 ∈ {1, ..., 𝑁}.

2.1 Households

There is no intertemporal borrowing and lending for households or entrepreneurs. The only way
to transfer wealth over time is by accumulating physical capital.¹ We model the worker side via a
representative household with preferences given by

max
𝐶ℎ,𝑡 ,𝐿𝑡 ,𝐼ℎ,𝑡

E0

∫ ∞

0
𝑒−𝜌ℎ 𝑡 [𝑢(𝐶ℎ,𝑡) − ℎ(𝐿𝑡)] 𝑑𝑡, (2.1)

where 𝜌ℎ is the discount factor, 𝐶ℎ,𝑡 is the consumption rate, 𝐿𝑡 is the labor supply, and 𝐼ℎ,𝑡 is the capital
investment rate. We also impose that 𝑢(𝑋) = log𝑋 and ℎ(𝑋) = 𝜓𝑋1+𝛾

1+𝛾 , where 𝜓 is the disutility from
working, and 𝛾 is the inverse Frisch elasticity. The budget constraint of the representative household
is

𝐶ℎ,𝑡 + 𝐼ℎ,𝑡 ≤ 𝑅𝑡𝐾ℎ,𝑡 +𝑊𝑡𝐿𝑡 , (2.2)

where 𝑅𝑡 and 𝑊𝑡 denote the capital rental price and wage, respectively. 𝐾ℎ,𝑡 is capital owned by
the household. The household also has access to a linear technology to transform final goods into
investment goods 𝐼ℎ,𝑡 . The law of motion of capital 𝐾ℎ,𝑡 is

¤𝐾ℎ,𝑡 = −𝛿𝐾ℎ,𝑡 + 𝐼ℎ,𝑡 .

The household takes 𝑅𝑡 and𝑊𝑡 as given and chooses a path of consumption rate, working intensity
and investment rate, 𝐶ℎ,𝑡 , 𝐿𝑡 and 𝐼ℎ,𝑡 , to maximize their utility function (2.1).

2.2 Final and Intermediate Goods Producers

The final good producers simply assemble intermediate goods and have no access to any saving tech-
nology.² The price of final good is normalized to be 1. A representative final goods producer takes
intermediate goods prices and the final good (numéraire) price as given and chooses the amount of

¹This assumption is introduced to emphasize the impact of financial frictions on capital misallocation.
²There is no intertemporal choice for the final goods producers whatsoever.
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intermediate goods input to maximize its per period profit,

max
{𝑋𝑖𝑡 }

{
𝑌𝑡 −

𝑁∑
𝑖=1

𝑃𝑖𝑡𝑋𝑖𝑡

}
. (2.3)

𝑋𝑖𝑡 denotes the input of sector 𝑖’s intermediate goods, and 𝑃𝑖𝑡 is the price for such intermediate
goods. The production function for final goods 𝑌𝑡 takes Cobb-Douglas form,

𝑌𝑡 =
𝑁∏
𝑖=1

𝑋𝜑𝑖
𝑖𝑡 ,

where we normalize the final goods production to be constant returns to scale, i.e.,
∑𝑁
𝑖=1 𝜑𝑖 = 1 with

all 𝜑𝑖 > 0.
Each entrepreneur owns a sector, and each sector is denoted by 𝑖 ∈ {1, ..., 𝑁}. There exists a con-

tinuum of firms in each sector, and each firm is indexed by 𝜄 ∈ [0, 1]. Entrepreneurs have preferences
given by

max
𝐶𝑒 ,𝑖 ,𝐼𝑒 ,𝑖

E0

∫ ∞

0
𝑒−𝜌𝑒 𝑡 [𝑢(𝐶𝑒 ,𝑖𝑡)] 𝑑𝑡, (2.4)

where 𝜌𝑒 is the discount rate for the entrepreneurs and 𝐶𝑒 ,𝑖𝑡 is their consumption rate. The budget
constraints for the entrepreneurs are

𝐶𝑒 ,𝑖𝑡 + 𝐼𝑒 ,𝑖𝑡 ≤ 𝐷𝑒 ,𝑖𝑡 + 𝑅𝑡𝐾𝑒 ,𝑖𝑡 . (2.5)

In the spirit of Kiyotaki and Moore (1997) and Liu and Wang (2014), we assume that 𝜌ℎ
𝜌𝑒

is small
enough that entrepreneurs have no incentive to accumulate any capital in equilibrium, i.e., 𝐼𝑒 ,𝑖𝑡 =

0, 𝐾𝑒 ,𝑖𝑡 = 0. Moreover, 𝐷𝑒 ,𝑖𝑡 denotes the dividends received by the entrepreneurs, and Π𝑖𝑡(𝜄) is the
profit of firm 𝜄 operating in sector 𝑖. Since all firms in sector 𝑖 are solely owned by one entrepreneur,
the dividends come from the total profits of all firms,

𝐷𝑒 ,𝑖𝑡 =
∫ 1

0
Π𝑖𝑡(𝜄)𝑑𝜄. (2.6)

Firms also have to pay a fixed operating cost Φ𝑖 in order to stay in business, and this fixed cost is
prepaid to draw an individual productivity shock. If the firm stays inactive for some period (because
of a low productivity draw) but remains in the business in the hope of becoming profitable later, the
fixed costΦ𝑖 must nevertheless be paid. The fixed cost is financed by issuing equity to the entrepreneur
who owns this sector.³

³Note here that by law of large numbers, the firms making money still outweigh the dormant firms. Therefore, en-
trepreneurs always enjoy a positive amount of consumption.
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Production Technology. Each firm 𝜄 in sector 𝑖 has access to a constant returns to scale technology
that transforms capital, labor and intermediate goods into sector 𝑖 goods,

𝑂𝑖𝑡(𝜄) = 𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)
[
𝐾𝑖𝑡(𝜄)𝜘𝑖𝐿𝑖𝑡(𝜄)1−𝜘𝑖

]1−𝛼𝑀,𝑖


𝑁∏
𝑗=1

𝑆𝑖 𝑗𝑡(𝜄)𝜔𝑖 𝑗

𝛼𝑀,𝑖

,

where 𝑂𝑖𝑡(𝜄) is the firm’s output and 𝑃𝑖𝑡 is the price of this product. 𝐴𝑖𝑡 is the sector-specific produc-
tivity shock. An operating firm rents capital 𝐾𝑖𝑡(𝜄) from households at rental rate 𝑅𝑡 , hires labor 𝐿𝑖𝑡(𝜄)
at the competitive real wage 𝑊𝑡 , and employs a bundle of material goods

𝑁∏
𝑗=1
𝑆𝑖 𝑗𝑡(𝜄)𝜔𝑖 𝑗 . Specifically,

𝑆𝑖 𝑗𝑡(𝜄) denotes the intermediate input, which is produced by sector 𝑗 and used by sector 𝑖 at time 𝑡,
and its price is 𝑃𝑗𝑡 . 𝛼𝑀,𝑖 is the intermediate input share, out of which 𝜔𝑖 𝑗 is the 𝑗 sector intermediate
input share used by sector 𝑖. For the remaining expenditure, 𝜅𝑖 is used on renting capital.

Finally, 𝑍𝑖𝑡(𝜄) is the firm-specific productivity shock, assumed to be i.i.d. both over time and across
firms. 𝐹𝑖 (·) is the cumulative density function of 𝑍𝑖𝑡(𝜄) in sector 𝑖. We normalize E𝑖 [𝑍𝑖𝑡(𝜄)] = 1 for all
sectors. To obtain a sharp result, throughout the paper, we let 𝑍𝑖(𝜄) conform to a Pareto distribution
to obtain a closed-form solution, i.e., 𝐹𝑖(𝑍𝑖𝑡) = 1 − (

𝑍𝑖𝑡/𝑍 𝑖
)−𝜂𝑖 with 𝑍 𝑖 = 1 − 1/𝜂𝑖 < 1.⁴

We can also denote 𝛼𝐾,𝑖 = (1 − 𝛼𝑀,𝑖)𝜘𝑖 , 𝛼𝐿,𝑖 = (1 − 𝛼𝑀,𝑖) (1 − 𝜘𝑖) , 𝛼𝑆,𝑖𝑗 = 𝛼𝑀,𝑖𝜔𝑖 𝑗 ; then, 𝛼𝐾,𝑖 , 𝛼𝐿,𝑖
and 𝛼𝑆,𝑖𝑗 represent the elasticities of output with respect to the capital input, labor input and inter-
mediate goods input, respectively. Since we assume constant returns to scale for firm production,
𝛼𝐾,𝑖 + 𝛼𝐿,𝑖 +∑𝑁

𝑗=1 𝛼𝑆,𝑖𝑗 = 1. As a result, the production function is equivalent to

𝑂𝑖𝑡(𝜄) = 𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)𝐾𝑖𝑡(𝜄)𝛼𝐾,𝑖𝐿𝑖𝑡(𝜄)𝛼𝐿,𝑖
𝑁∏
𝑗=1

𝑆𝑖 𝑗𝑡(𝜄)𝛼𝑆,𝑖𝑗 .

Working Capital Constraint. Firms do not make upfront payments to households and to other
firms. Instead, all the working capital is loaned to the firms as credit. Since firms have limited li-
ability, the credit offered is tailored to provide a sufficient repayment incentive. This working capital
loan is made before firms draw their idiosyncratic productivities, so creditors must form expectations
about firms’ value before the realization of the productivity shocks. We show in appendix A. 3 that
the IC condition takes a very simple form:

𝑅𝑡𝐾𝑖𝑡(𝜄) +𝑊𝑡𝐿𝑖𝑡(𝜄) +
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄) ≤ Θ𝑖𝑉𝑖𝑡 ≡ 𝐵𝑖𝑡 . (2.7)

𝑉𝑖𝑡 is an individual firm’s expected value. Effectively, Θ𝑖 ∈ [0, 1] represents the degree of efficiency of
the credit markets: Θ𝑖 = 1 corresponds to a credit market that offers borrowers maximal amount of

⁴Mathematical requirement: 𝜂𝑖 > 2. Consequently, E [𝑍𝑖𝑡 (𝜄)] = 1, 𝑉𝑎𝑟 [𝑍𝑖𝑡 (𝜄)] = 1
𝜂𝑖 (𝜂𝑖−2)
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loan that can be guaranteed to be repaid, and Θ𝑖 = 0 corresponds to the case where the credit market
is completely shut down. We use 𝐵𝑖𝑡 to denote the endogenous borrowing limit in sector 𝑖.

We show in appendix A. 4 that with the presence of the working capital constraint, there exists a
cutoff productivity 𝑍∗

𝑖𝑡 for each sector, above which the firm participates in production; otherwise, the
firm stays inactive. Thus, only firms with sufficiently high productivities choose to operate, and all
operating firms will borrow to the limit. Because firms within a sector produce homogeneous goods
and the marginal revenues from producing such goods are the same for all firms, the same amounts
of capital, labor and intermediate goods are hired by heterogeneous operating firms. However, firms
with higher idiosyncratic productivities effectively enjoy a lower marginal cost of producing. As a
result, firms will borrow to their limit whenever their marginal costs are lower than their marginal
revenues, and such limit is regulated by a common sector-level credit constraint. However, since the
productivities are different, firms with higher productivities will produce more even with the same
amount of input.

2.3 Input-Output Linkages and Aggregation

In this section, we introduce input-output linkages between sectors. We define input-output matrices,
Leontief inverse matrices and Domar weights in this economy. This section builds on concepts widely
used in the literature on production networks (see, for example, Baqaee and Farhi (2018) and Baqaee
and Farhi (2020)).

Input-output Matrices. We define the revenue-based input-output matrix to be α̃𝑆𝑡 and the cost-
based input-output matrix to be α𝑆𝑡 . The 𝑖 𝑗-th element of α̃𝑆𝑡 is sector 𝑖’s expenditure on the inter-
mediate goods from sector 𝑗 as a share of 𝑖’s total revenue, while the 𝑖 𝑗-th element of α𝑆𝑡 corresponds
to the elasticity of output with respect to intermediate goods input from sector 𝑗.

�̃�𝑆,𝑖𝑗𝑡 =
𝑃𝑗𝑡𝑆𝑖 𝑗𝑡
𝑃𝑖𝑡𝑂𝑖𝑡

, 𝛼𝑆,𝑖𝑗𝑡 =
𝑃𝑗𝑡𝑆𝑖 𝑗𝑡

𝑊𝑡𝐿𝑖𝑡 + 𝑅𝑡𝐾𝑖𝑡 +∑𝑁
𝑗=1 𝑃𝑗𝑡𝑆𝑖 𝑗𝑡

.

Notice that there is a wedge between the sector-level endogenous expenditure shares and the
primitive firm-level elasticities of output with respect to variable inputs. We assume the wedge
E𝑖𝑡

(
𝑍𝑖𝑡(𝜄)/𝑍∗

𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗
𝑖𝑡

)
weakly decreases with 𝑍∗

𝑖𝑡 .⁵

�̃�𝑆,𝑖𝑗𝑡 = 𝛼𝑆,𝑖𝑗
𝑍∗
𝑖𝑡

E𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

) .
⁵E𝑖

(
𝑍𝑖𝑡 (𝜄)/𝑍∗

𝑖𝑡 |𝑍𝑖𝑡 (𝜄) ≥ 𝑍∗
𝑖𝑡

)
≥ 1 creates a wedge between the average and the lower bound of an operating firm’s

productivity. This assumption basically states that such a wedge weakly narrows when the productivity floor is raised.
This is a very mild assumption because intuitively when the productivity floor increases, the dispersion of productiv-
ities decreases. Since we assume the Pareto distribution for idiosyncratic productivity shocks, we immediately have
E𝑖

(
𝑍𝑖𝑡 (𝜄)/𝑍∗

𝑖𝑡 |𝑍𝑖𝑡 (𝜄) ≥ 𝑍∗
𝑖𝑡

)
= 1/𝑍𝑖 , which is a constant and independent of 𝑍∗

𝑖𝑡 and the assumption is satisfied.
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Analogously, we can define the cost-based capital share and labor share,

�̃�𝐿,𝑖𝑡 = 𝛼𝐿,𝑖
𝑍∗
𝑖𝑡

E𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

) , �̃�𝐾,𝑖𝑡 = 𝛼𝐾,𝑖
𝑍∗
𝑖𝑡

E𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

)
Leontief Inverse Matrix. We define the revenue-based Leontief inverse matrix �̃�𝑡 and cost-based
Leontief inverse matrix 𝚿𝑡 as

�̃�𝑡 =
(
I − α̃′

𝑺,𝒕

)−1
=

∞∑
𝑘=0

(
α̃′

𝑺,𝒕

) 𝑘
, 𝚿𝑡 =

(
I −α′

𝑺,𝒕

)−1
=

∞∑
𝑘=0

(
α′

𝑺,𝒕

) 𝑘
.

Intuitively, the 𝑖 𝑗-th element of �̃�𝑡 is a measure of 𝑖’s total reliance on 𝑗 as a supplier. And the 𝑖 𝑗-
th element of 𝚿𝑡 records the direct and indirect exposures of the cost of 𝑖 to the price of 𝑗 through
the production network. Note that this is still a partial-equilibrium elasticity where factor prices are
considered fixed.

Domar Weights. Wedefine the revenue-basedDomarweight �̃�𝑖𝑡 of the intermediate goods producer
𝑖 as its sales share as a fraction of aggregate output

�̃�𝑖𝑡 =
𝑃𝑖𝑡𝑂𝑖𝑡

𝑌𝑡
.

In general,
∑𝑁
𝑖=1 �̃�𝑖 > 1, since there are not only final sales but also intermediate sales. Domar weights

are ameasure of sector weights whenwe integrate or aggregate all the sectors. Revenue-based Domar
weight λ̃𝑡 is determined by Leontief inverse matrix and final good expenditure share. And we can
analogously define the cost-based Domar weight λ𝑡 to measure the importance of 𝑖 as a supplier for
final goods producers,

λ̃𝑡 =
(
I − α̃′

𝑆,𝑡
)−1

φ = �̃�𝑡φ, λ𝑡 =
(
I −α′

𝑺,𝒕

)−1
φ = 𝚿𝑡φ.

Sectoral Misallocation and Shock Amplification. Due to imperfect contract enforcement, produc-
tive firms cannot operate at their full capacities, and their production is restricted by working capital
constraints. This leads to misallocation and the suppression of aggregate productivity. Apparently,
without credit constraints, only firms with the highest productivities operate. However, when credit
constraints take effect, less productive firms can also participate, and such misallocation lowers aver-
age productivity. As a consequence, with the presence of working capital constraints, an increase in
sectoral output will have an additional effect of relaxing the borrowing limits, which in turn drives
up the average productivity in this sector and results in yet higher sectoral output. Credit constraints
create a positive feedback loop that amplifies productivity shocks. We refer to this feedback loop
as “reallocation effect”. We show how such reallocation effect manifests itself in the borrowing and
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lending process in the following proposition.

Proposition 2.1. Given the vector of cutoff productivities 𝒁∗
𝒕 =

[
𝑍∗

1𝑡 , ..., 𝑍
∗
𝑁𝑡

] ′ and aggregate output 𝑌𝑡 , the
loan-to-output ratio depends on the tightness of the credit constraints and the profitability of the average firm,

𝐵𝑖𝑡
𝑌𝑡

=
Θ𝑖

𝜌𝑒

[
𝜉

(
𝑍∗
𝑖𝑡

) − 𝜙𝑖𝑡
] ≡ 𝑔(𝑍∗

𝑖𝑡), (2.8)

where 𝜙𝑖𝑡 = Φ𝑖/𝑌𝑡 . 𝜉(𝑍∗
𝑖𝑡) − 𝜙𝑖𝑡 is the expected marginal profit for a firm,

𝜉(𝑍∗
𝑖𝑡) = �̃�𝑖𝑡

©«1 − �̃�𝐾,𝑖𝑡 − �̃�𝐿,𝑖𝑡 −
𝑁∑
𝑗=1

�̃�𝑆,𝑖𝑗𝑡
ª®¬ .

On the other hand, the credit demand monotonically maps the loan-to-output ratio to cutoff productivity,

𝐵𝑖𝑡
𝑌𝑡

=
�̃�𝑖𝑡𝑍∗

𝑖𝑡∫
𝑍∗
𝑖𝑡
𝑍𝑖𝑡(𝜄)𝑑𝐹(𝑍𝑖𝑡(𝜄))

≡ ℎ(𝑍∗
𝑖𝑡). (2.9)

In addition, 𝑔(𝑍∗
𝑖𝑡) is decreasing in 𝑍∗

𝑖𝑡 , while ℎ(𝑍∗
𝑖𝑡) is weakly increasing in 𝑍∗

𝑖𝑡 .

Proposition 2.1 pins down the supply of credit (2.8) and the demand of credit (2.9). Given the
aggregate output 𝑌𝑡 , the cutoff productivities can be uniquely determined,

Θ𝑖

𝜌𝑒

[
𝜉

(
𝑍∗
𝑖𝑡

) − 𝜙𝑖
]
=

�̃�𝑖𝑡𝑍∗
𝑖𝑡∫

𝑍∗
𝑖𝑡
𝑍𝑖𝑡(𝜄)𝑑𝐹(𝑍𝑖𝑡(𝜄))

.

The cutoff productivities can immediately be connected to aggregate output with Pareto distribu-
tion,

𝑍∗
𝑖𝑡 =

[
Θ𝑖

𝜌𝑒(𝜂𝑖 − 1)
(
1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

)]1/𝜂𝑖
𝑍 𝑖 .

This result shows that 𝑍∗
𝑖𝑡 is increasing inΘ𝑖 . If contract enforcement is stronger (i.e., Θ𝑖 is higher),

more credit will be made available for the more productive firms, and the resources will shift towards
those firms. In accordance, the cutoff productivity 𝑍∗

𝑖𝑡 will be increased. By the same token, 𝑍∗
𝑖𝑡 also

strictly increases in 𝑌𝑡 , provided that the fixed cost is positive. Higher aggregate output inflates the
value of productive firms, which in turn relaxes the credit constraints for more productive firms and
facilitates resource reallocation to the more productive firms.

Our intuition regarding the self-fulfilling business cycles hinges on an endogenous amplification
mechanism. To understand how credit constraints amplify business cycle fluctuations, let us consider
a hypothetical increase in sector-specific productivity 𝐴𝑖 and see how the labor market responds.

On the labor supply side, there exist three competing forces. First, the marginal productivity of
labor increases, as does the wage. The wage effect will boost labor supply. Second, a higher marginal
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productivity of capital drives up the interest rate. The interest rate effect makes households more
willing to work today. Third, the production expansion allows households to earn a higher income.
The wealth effect makes households desire more leisure and supply less labor. The overall change in
supply of labor is determined by the relative forces of these three effects. Under usual configuration,
the labor supply curve moves up.

On the labor demand side, there are also three forces taking effect, each reinforcing the other.
First, when the marginal productivity of labor increases, firms tend to hire more workers. Second,
with the presence of credit constraints, production expansion leads to an increase in firm value and
thus enables productive firms to borrow more. Besides, with credit constraints, the loan-to-output
ratio responds more than proportionately to changes in total output, because higher output reduces
the average fixed cost and thus alleviates the effective credit constraint. This reallocation effect drives
up the sector-level endogenous productivity and allows firms to hiremoreworkers. Third, an increase
in sector 𝑖’s productivity will also positively affect other sectors’ production through the input-output
linkages, which creates positive reallocation effects throughout the economy. We call this effect as
“reallocation through network effects”. But of course, a sector level productivity shock may have
mixed effect on the total output depending on the architecture of the network and the position of the
sector in the network. All three forces will shift the labor demand curve out.

The equilibrium employment is jointly determined by the supply and demand side of the labor
market as discussed above. But no matter what direction the equilibrium employment eventually
moves, the financial constraints and input-output linkages are more likely to amplify suchmovement.

Aggregation. We can map the multisector economy to the prototypical representative-firm econ-
omy. In proposition 2.2, we will derive a reduced-form aggregate production function. When we
aggregate the whole economy, the final good production can be expressed as a Cobb-Douglas pro-
duction function using aggregate capital and aggregate labor. The endogenous TFP turns to be the
Domar-weighted geometric average of all sectors’ endogenous productivities, corrected by the general
equilibrium effect from the resource allocation. Meanwhile, the capital and labor share are endoge-
nous as well, which in theory is time varying. Our aggregation results are complementary to the
related literature such as Jones (2005), Lagos (2006), Moll (2014), Mangin (2017) and Baqaee and Farhi
(2018), among others. The following representation shows how sectoral distortions manifest at the
aggregate level.
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Proposition 2.2. (Aggregate output and endogenous TFP) The aggregate output is given by⁶

𝑌𝑡 = 𝐴𝑡𝐾
𝛼𝐾,𝑡
𝑡 𝐿

𝛼𝐿,𝑡
𝑡 , (2.10)

where the aggregate elasticities of final good output with respect to capital and labor are given by 𝛼𝐾,𝑡 =

λ′
𝑡α𝐾 , 𝛼𝐿,𝑡 = λ′

𝑡α𝐿, with 𝛼𝐾,𝑡 + 𝛼𝐿,𝑡 = 1. We define endogenous TFP as

𝐴𝑡 = 𝜁𝑡

𝑁∏
𝑖=1

𝐴𝜆𝑖𝑡
𝑖𝑡 ,

where 𝐴𝑖𝑡 = 𝐴𝑖𝑡E𝑖
(
𝑍𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗

𝑖𝑡

) ≥ 𝐴𝑖𝑡 can be interpreted as endogenous sector-specific productivity. More-
over, we define 𝜁𝑡 as the TFP component that is affected by the allocation of factors and intermediate goods,

𝜁𝑡 =
𝑁∏
𝑖=1

𝑘𝛼𝐾,𝑖𝑖𝑡 𝑙𝛼𝐿,𝑖𝑖𝑡

𝑁∏
𝑗=1

(
�̃�𝑆,𝑖𝑗𝑡

�̃�𝑖𝑡

�̃� 𝑗𝑡

)𝛼𝑆,𝑖𝑗 
𝜆𝑖𝑡

·
𝑁∏
𝑖=1

(
𝜑𝑖

�̃�𝑖𝑡

)𝜑𝑖
,

with 𝑘𝑖𝑡 = 𝐾𝑖𝑡/𝐾𝑡 and 𝑙𝑖𝑡 = 𝐿𝑖𝑡/𝐿𝑡 being the capital and the labor share employed by each sector.

Furthermore, the GDP can be obtained using the value-adding approach,

𝐺𝐷𝑃 = 𝑌𝑡 −
𝑁∑
𝑖=1

𝑃𝑖𝑡𝑋𝑖𝑡 +
𝑁∑
𝑖=1

𝑃𝑖𝑡𝑂𝑖𝑡 −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 −Φ𝑖

 = 𝑌𝑡 −
𝑁∑
𝑖=1

Φ𝑖 .

Another observation, as shown in appendix A. 6, is that the accumulation of aggregate capital is

¤𝐾𝑡 = −𝛿𝐾𝑡 + (𝛼𝐾,𝑡 + 𝛼𝐿,𝑡)𝑌𝑡 − 𝐶ℎ,𝑡 . (2.11)

where 𝛼𝐿,𝑡 ≡ λ̃
′
𝑡α̃𝐿,𝑡 and 𝛼𝐾,𝑡 ≡ λ̃

′
𝑡α̃𝐾,𝑡 as shown in appendix A. 5, are the total expenditure shares

of labor and capital. It follows that the accumulation of capital is related to aggregate output 𝑌𝑡 and
household consumption 𝐶ℎ,𝑡 . Note that the households’ decisions regarding labor supply 𝐿𝑡 and
consumption 𝐶ℎ,𝑡 are all nonlinear functions of 𝐾𝑡 . In addition, (𝛼𝐾,𝑡 + 𝛼𝐿,𝑡) could also be highly
nonlinear in principle since 𝑍∗

𝑖𝑡 is a complicated function of 𝑌𝑡 . Therefore, the law of motion of capital
is highly nonlinear.

⁶If 𝑁 = 1, i.e., for the one-sector model, then immediately 𝜁 = 1, and the aggregate output in equation (2.10) is simply
reduced to

𝑌𝑡 = 𝐴𝑡E
(
𝑍𝑡 |𝑍𝑡 ≥ 𝑍∗

𝑡
) · 𝐾𝛼𝐾

𝑡 𝐿𝛼𝐿𝑡 ,

This coincides with the one-sector model in Moll (2014), Liu and Wang (2014), where 𝐴𝑡 is the aggregate TFP shock and
𝛼𝐾 , 𝛼𝐿 are the capital share and labor share.
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2.4 Equilibrium Definition and Characterization

Market Clearing Conditions. The markets for capital, labor and intermediate goods all clear

𝐾ℎ,𝑡 =
𝑁∑
𝑖=1

𝐾𝑖𝑡 , 𝐿𝑡 =
𝑁∑
𝑖=1

𝐿𝑖𝑡 , 𝑂𝑖𝑡 = 𝑋𝑖𝑡 +
𝑁∑
𝑗=1

𝑆 𝑗𝑖𝑡 . (2.12)

In addition, summing up entrepreneurs’ and workers’ budget constraints and by the aforementioned
market clearing conditions, we can obtain the aggregate resource constraints in this economy,

𝑌𝑡 −
𝑁∑
𝑖=1

Φ𝑖 = 𝐶ℎ,𝑡 + 𝐶𝑒 ,𝑡 + 𝐼ℎ,𝑡 + 𝐼𝑒 ,𝑡 . (2.13)

Competitive Equilibrium. Given sequences of sector-level productivities 𝐴𝑖𝑡 and distributions of
firm-specific productivities 𝐹(𝑍𝑖𝑡), a competitive equilibrium consists of a set of prices {𝑃𝑖𝑡 , 𝑅𝑖𝑡 ,𝑊𝑖𝑡},
the consumption, labor supply and investment decisions of the households {𝐶ℎ,𝑡 , 𝐿𝑡 , 𝐼ℎ,𝑡}, the con-
sumption of the entrepreneurs {𝐶𝑒 ,𝑖𝑡}, the intermediate goods input chosen by final good producers
{𝑋𝑖𝑡}, the capital, labor and intermediate goods input, and the borrowing amount chosen by the in-
termediate goods producers

{
𝐾𝑖𝑡(𝜄), 𝐿𝑖𝑡(𝜄), 𝑆𝑖 𝑗𝑡(𝜄)

}
such that:

i. households maximize the utility (2.1) subject to their budget constraints (2.2);

ii. entrepreneurs maximize their utility (2.4) subject to their budget constraints (2.5);

iii. final good producers choose intermediate goods inputs to maximize their profits (2.3);

iv. intermediate goods producers choose capital, labor and intermediate goods inputs to maximize
their profits (A.3) subject to the collateral constraint (A.4) as shown in appendix A. 3; and

v. the markets for all goods and factors clear by (2.12) and (2.13).

3. MULTISECTOR BUSINESS CYCLES

We have established that the reallocation effect and production network are essential for amplifying
productivity shocks. We now turn to studying self-fulfilling business cycles. We will show that credit
constraints together with the production network can make the aggregate economy observationally
equivalent to an economy that operates at increasing returns to scale, thus making it more likely to be
exposed to self-fulfilling fluctuations.
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3.1 Aggregate Financial Multiplier

In this section, wewill convince the readers that whether an economy is exposed to self-fulfilling fluc-
tuations can be summarized by a single characteristic variable: aggregate financial multiplier 𝜇. Propo-
sition 3.1 shows that equilibrium indeterminacy arises if the size of aggregate financial multiplier falls
within certain range.

Proposition 3.1. (Equilibrium indeterminacy) The necessary and sufficient condition for equilibrium inde-
terminacy is given by

max
{
𝜇∗

1 , 𝜇
∗
2
}
< 𝜇 < 𝜇∗

3 ,

where 𝜇 is the aggregate financial multiplier,

𝜇 ≡
(
1 −

𝑁∑
𝑖=1

𝜐𝑖𝜆𝑖

)−1

= (1 − 𝜚)−1 .

Here, we write 𝜚 =
𝑁∑
𝑖=1

𝜐𝑖𝜆𝑖 , and 𝜐𝑖 =
Φ𝑖

𝑌�̃�𝑖−𝜂𝑖Φ𝑖
=

(
�̃�𝑖𝑌
Φ𝑖

− 𝜂𝑖
)−1

.

𝜇∗
1 =

1 + 𝛾

𝛼𝐿
, 𝜇∗

2 =
𝛿 (1 + 𝛾)

𝛼𝐾+𝛼𝐿
𝛼𝐾

(𝛿 + 𝜌ℎ) (1 + 𝛾) 𝛼𝐾 − 𝛼𝐿𝜌ℎ
, 𝜇∗

3 =
1
𝛼𝐾
.

The indeterminacy region is defined by
(
max

{
𝜇∗

1 , 𝜇
∗
2
}
, 𝜇∗

3
)
. 𝜇∗

1 and 𝜇∗
2 jointly determine the lower

bound of the indeterminacy region. Notice that indeterminacy will only arise when a hypothetical
increase in expected future equity value can be validated in the equilibrium. With a reasonably high
aggregate financial multiplier, the reallocation effect can generate sufficiently large increment in ag-
gregate TFP. This makes the labor demand shift sufficiently up to offset the wealth effect on labor
supply side. As a result, the equilibrium employment and the expected future equity value indeed
increase as expected. On the other hand, 𝜇∗

3 defines the upper bound. If 𝜇 > 𝜇∗
3, the amplification

effect is too strong to the extend that it generates endogenous growth rather than endogenous cycle.
Notice that both the size of aggregate financial multiplier and its range that creates indeterminacy are
influenced by the production network.

In order to establish the equivalence shown in proposition 3.1, let us first study the local dynam-
ics around steady state and show how we obtain the exact analytical characterization of aggregate
financial multiplier 𝜇.⁷ We henceforth work with the log-linearized solution around a steady state.
We denote the steady state of 𝑋𝑡 as 𝑋 and the percentage deviation of 𝑋𝑡 from the steady state as 𝑋𝑡 .

⁷We are also able to characterize the global dynamics for this economy, and the discussion is in Appendix C. 3.
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Lemma 1. The log-linearized system of output and sectoral cutoff productivity is given by

𝑍∗
𝑖𝑡 = 𝜐𝑖𝑌𝑡 , (3.1)

𝑌𝑡 =
𝑁∑
𝑖=1

𝜆𝑖𝐴𝑖𝑡 +
𝑁∑
𝑖=1

𝜆𝑖𝑍∗
𝑖𝑡 + 𝛼𝐾𝐾𝑡 + 𝛼𝐿𝐿𝑡 . (3.2)

Lemma 1 highlights a positive feedback loop in local dynamics. Let us consider a hypothetical
improvement in sector-specific productivity 𝐴𝑖 . From equation (3.2), this will lead to an increase in
total output 𝑌𝑡 . How does an increase in 𝑌𝑡 affect the sectoral productivity cutoff 𝑍∗

𝑖𝑡? The fact that
𝜐𝑖 > 0⁸ and equation (3.1) underscore that a higher aggregate output improves allocation efficiency
in sector 𝑖. We call this reallocation effect: a higher total output helps alleviate the effective sectoral
financial constraint and improves the sectoral productivity by reallocating credit to more productive
firms. Such reallocation effect is moremanifest with higher degree of heterogeneity. Note that as 𝜂𝑖 →
∞, i.e., as firm-level heterogeneity vanishes, the effect of aggregate output 𝑌𝑡 on cutoff productivity
𝑍∗
𝑖𝑡 wanes. Equation (3.2), on the other hand, states that, given (𝐾𝑡 , 𝐿𝑡), a positive sector-specific TFP

shock 𝐴𝑖𝑡 and an improvement in allocation efficiency 𝑍∗
𝑖𝑡 contribute to higher aggregate output. ⁹

The joint work of production network and credit constraints create an aggregate financial multi-
plier in local dynamics. Combining equations (3.1) and (3.2) yields

𝑌𝑡 = 𝜇 ·
[
𝑁∑
𝑖=1

𝜆𝑖𝐴𝑖𝑡 + 𝛼𝐾𝐾𝑡 + 𝛼𝐿𝐿𝑡

]
, (3.3)

We illustrate in Figure 1 themechanism throughwhich credit constraints togetherwith production
network can generate an endogenous aggregate financial multiplier. An increase in output enables
more productive firms to borrow more and produce more. As a result, it leads to reallocation that
implies a higher endogenous sector-specific productivity 𝐴𝑖𝑡 by raising the sector-specific productiv-
ity cutoff 𝑍∗

𝑖 . This reallocation effect generates the sector-specific financial multiplier 𝜐𝑖 . On the other
hand, the increase in sector-level productivity results in higher aggregate output through the produc-
tion network, and this sector-level network effect is weighted by Domar weight 𝜆𝑖 . Thus, increased
output 𝑌 leads to a 𝜚-fold additional increase in output 𝑌. The one-round financial multiplier 𝜚 is a
Domar-weighted average of all sector-specific financial multiplier 𝜐𝑖 . This one-round financial multi-
plier will take effect in infinite rounds, as such an additional increase in output 𝑌 will lead to a new
round of multiplication and so forth. Therefore, the total effect of the financial multiplier would be

⁸From equation (C.1) we know that in the steady state, the admissible parameter space is �̃�𝑖𝑌
Φ𝑖

> 𝜂𝑖 , i.e. sectoral fixed cost
Φ𝑖 is relatively unimportant compared with sectoral sales �̃�𝑖𝑌 and/or within-sector heterogeneity is substantial.

⁹At the extensive margin, 𝜐𝑖 = 0 if Φ𝑖 = 0, i.e., there is no fixed cost in sector 𝑖. The fixed cost is not essential for
our results. Instead, it is obvious that what matters is the endogenously procyclical leverage ratio 𝐵𝑖𝑡/𝑌𝑡 , as indicated by
equation (2.8). If Φ𝑖 = 0, but instead borrowing constraint Θ𝑖𝑡 is endogenous, we can still have a positive effect of 𝑌𝑡 on 𝑍∗

𝑖𝑡 ,
which is qualitatively similar to the findings in equation (3.1).
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𝜇 = 1
1−𝜚 . For the convenience of exposition in the following sections, 𝜚 and 𝜇 are interchangeably

referred to as economy-wide financial multipliers, as they are one-to-one mapped.

Figure 1: Aggregate Multiplier

Generalized Hulten Theorem. The effects of productivity shocks on output vary across sectors.
There are two layers of amplification for uniform sector-level technology shocks: amplification through
the production network and amplification through credit constraints.

Proposition 3.2. (Response of output to sector productivity shocks) As shown by equations (3.2) and
(3.3),

𝜕 ln𝑌𝑡
𝜕 ln𝐴𝑖𝑡

= 𝜆𝑖 ,
𝑁∑
𝑖=1

𝜕 ln𝑌𝑡
𝜕 ln𝐴𝑖𝑡

=
𝑁∑
𝑖=1

𝜆𝑖 ≡ 𝜒 > 1 (network multiplier),

𝑑 ln𝑌𝑡
𝑑 ln𝐴𝑖𝑡

=
𝜆𝑖

1 −∑𝑁
𝑖=1 𝜐𝑖𝜆𝑖

= 𝜇𝜆𝑖 > 𝜆𝑖 > �̃�𝑖 (network multiplier + financial multiplier).

Therefore the Hulten theorem fails to hold here since the first-order impact on output of a sectoral
productivity shock is larger than that sector’s sales share �̃�𝑖 . The Hulten theorem holds if and only
if either of the three scenarios occurs: (a) 𝑉𝑎𝑟(𝑍𝑖𝑡) = 0, i.e., 𝜂𝑖 → ∞; thus, there exists no firm het-
erogeneity. (b) Φ𝑖 = 0; thus, the leverage ratio 𝐵𝑖𝑡/𝑌𝑡 is constant, and there is no misallocation due
to financial frictions. (c) Θ𝑖 → ∞; only the most productive firm produces. On the other hand, 𝜒
captures the percentage change in output in response to a uniform one-percent increase in all sectors’
productivities. It captures a notion of returns to scale at the aggregate level. The amplification of this
uniform productivity shock arises because goods are reproducible.

Aggregate Increasing Returns. It is direct to see that endogenous increasing returns to scale (IRS)
emerges in reduced-form aggregate production function,

𝜕𝑌𝑡

𝜕𝐾𝑡
+ 𝜕𝑌𝑡

𝜕𝐿𝑡
= 𝜇 > 1.
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In particular, we do not need Φ𝑖 > 0 for all sectors to obtain IRS. Instead, the following holds,

∃ 𝑖 ∈ N such that Φ𝑖 > 0 =⇒ 𝜇 =

(
1 −

𝑁∑
𝑖=1

𝜆𝑖Φ𝑖

�̃�𝑖𝑌 − 𝜂𝑖Φ𝑖

)−1

> 1.

This condition describes that as long as the fixed cost is present in at least one sector, the endoge-
nous IRS would always emerge in this economy. Next we will show that the equilibrium indetermi-
nacy stems from endogenous IRS.

Equilibrium Indeterminacy. The reduced-form aggregate production in our model exhibits in-
creasing returns to scale, which makes the economy prone to self-fulfilling sunspot-driven business
cycles. Now we examine when sunspot-driven fluctuations are likely to occur. We focus on local
dynamics around the steady state and abstract from fundamental shocks. The equilibrium can be
summarized as the following log-linearized system of equations:

𝑌𝑡 = 𝜇
(
𝛼𝐾𝐾𝑡 + 𝛼𝐿𝐿𝑡

)
,

𝐿𝑡 =
1

1 + 𝛾

(
𝑌𝑡 − 𝐶ℎ,𝑡

)
,

¤̂𝐾𝑡 = (𝛼𝐾 + 𝛼𝐿) 𝑌𝐾
(
𝑌𝑡 − 𝐾𝑡

)
− 𝐶ℎ
𝐾

(
𝐶ℎ,𝑡 − 𝐾𝑡

)
,

¤̂𝐶ℎ,𝑡 = 𝛼𝐾
𝑌
𝐾

(
𝑌𝑡 − 𝐾𝑡

)
.

Lemma 2. Without fundamental shocks, the perfect foresight equilibrium can be equivalently summarized by
the following log-linearized system of equations in 𝑌𝑡 and 𝐾𝑡 :[ ¤̂𝑌𝑡

¤̂𝐾𝑡

]
= J

[
𝑌𝑡
𝐾𝑡

]
.

The Jacobian matrix is given by J =

[
𝑥11 𝑥12

𝑥21 𝑥22

]
. Each element in the Jacobian matrix is

𝑥11 =
𝑌
𝐾
𝛼𝐾 − 𝜖𝐶𝐾(𝛼𝐾 + 𝛼𝐿)

𝜖𝐶𝑌
+ 𝐶ℎ
𝐾
𝜖𝐶𝐾 , 𝑥12 =

𝐶ℎ
𝐾

𝜖𝐶𝐾 (𝜖𝐶𝐾 − 1)
𝜖𝐶𝑌

+ 𝑌
𝐾
𝜖𝐶𝐾 (𝛼𝐾 + 𝛼𝐿) − 𝛼𝐾

𝜖𝐶𝑌
,

𝑥21 =
𝑌
𝐾
(𝛼𝐾 + 𝛼𝐿) − 𝐶ℎ

𝐾
𝜖𝐶𝑌 , 𝑥22 =

𝐶ℎ
𝐾

(1 − 𝜖𝐶𝐾) − 𝑌
𝐾
(𝛼𝐾 + 𝛼𝐿) ,

where

𝜖𝐿𝐾 =
−𝛼𝐾
𝛼𝐿

, 𝜖𝐿𝑌 =
1

𝜇𝛼𝐿
, 𝜖𝐶𝐾 =

𝛼𝐾(1 + 𝛾)
𝛼𝐿𝜇

, 𝜖𝐶𝑌 =
𝛼𝐿𝜇 − 1 − 𝛾

𝛼𝐿𝜇
,
𝑌
𝐾

=
𝛿 + 𝜌ℎ
𝛼𝐾

,
𝐶ℎ
𝐾

= (𝛿 + 𝜌ℎ) 𝛼𝐾 + 𝛼𝐿
𝛼𝐾

− 𝛿.

Following the seminal works by Benhabib and Farmer (1994) and the important extensions by
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Wen (1998) and Benhabib and Wang (2013), among others, we know that the necessary and sufficient
conditions for the existence of sunspot-driven fluctuations are 𝑑𝑒𝑡 (J) > 0 and 𝑡𝑟 (J) < 0. These con-
ditions lead us back to proposition 3.1 that regulates the parameters such that the aggregate financial
multiplier falls in following range,

max
{
𝜇∗

1 , 𝜇
∗
2
}
< 𝜇 < 𝜇∗

3.

Next, we will discuss some characteristics of the local dynamics. Since we are particularly inter-
ested in the role of the production network, we will sketch how the network weight and architecture
alter the likelihood of sunspot-driven fluctuations. In the first exercise, we set the network struc-
ture to be symmetric and demonstrate how the intermediate input share can impact the formation of
self-fulfilling business cycles. The second exercise turns to the asymmetric production network and
inspects which network structure is more likely to drive the economy into multiple equilibria.

3.2 Altering the Network Weight

We now address how the intermediate input share alters the economy-wide financial multiplier. For
computational convenience, we assume the following symmetric input-output table:

α𝑆 = α𝑀ω =

[
𝛼𝑀 0
0 𝛼𝑀

] [
𝜔 1 − 𝜔

1 − 𝜔 𝜔

]
.

Wefix the input-output linkage 𝜔while altering the intermediate input share 𝛼𝑀 . We assume that
the ratio of total fixed costs to final goods output is constant to shut down the pro-cyclical leverage
channel emphasized in Liu and Wang (2014) and only focus on the role played by the production
network in driving indeterminacy. We further assume that the fixed cost Φ𝑖 and financial constraint
Θ𝑖 are symmetric across sectors. Recall that the economy-wide financial multiplier is the weighted
average of all sector-level financial multipliers,

𝜇 ≡
(
1 −

𝑁∑
𝑖=1

𝜐𝑖𝜆𝑖

)−1

= (1 − 𝜚)−1 ,

where 𝜚 =
𝑁∑
𝑖=1

𝜐𝑖𝜆𝑖 , and the sector-level financial multiplier 𝜐𝑖 =
(
�̃�𝑖/𝜙𝑖 − 𝜂𝑖

)−1
hinges on the relative

importance of fixed cost in this sector.
Figure 2 plots the response of the economy-wide financial multiplier to the change in the inter-

mediate input share.¹⁰ The key observation is that the impact of an increase in the intermediate input

¹⁰Parameters: 𝜙1 = 𝜙2 = 0.065,φ =
[
0.5 0.5

]′ , 𝜂 = 6, 𝑎 = 0.2, 𝛾 = 0,𝜓 = 1, 𝛿 = 0.025. To calibrate Θ, match with Liu

and Wang (2014), 𝐵
𝑌−Φ = 𝐵

𝑌(1−𝜙) = 2.08. Then Θ =
2.08(1−𝜙)𝜌𝑒

𝜉(𝑍∗
1)+𝜉(𝑍∗

2)−𝜙 .
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Figure 2: Financial multiplier when altering the intermediate input share

share 𝛼𝑀 on the aggregate financial multiplier 𝜇 exhibits a U-shape. Since all sectors are symmet-
ric, we can consider one sector as an example. The upward-sloping blue curve corresponds to the
“size effect”: an increase in the intermediate input share boosts the sales of intermediate firms, which
is reflected by an increasing Domar weight. This tends to amplify the sector-level financial multi-
plier since intermediate firms that are subject to financial constraints expand. On the other hand, the
downward-sloping red curve corresponds to the “diluting effect” because higher sales make the fixed
cost play a less important role and thus dampen the procyclicality of the loan-to-output ratio. To be
more precise, higher sales will dampen the sector-level financial multiplier 𝜐𝑖 =

(
�̃�𝑖/𝜙𝑖 − 𝜂𝑖

)−1
.

These two forces are always pushing in opposite directions. However, the combination of the
two determines the trend of economy-wide financial multiplier 𝜇 (represented by the black dashed
curve). The curve is U-shaped, which indicates that the diluting effect dominates the size effect when
the intermediate input share is not too large, and the relationship reverses when the intermediate
input share reaches a sufficiently high level.

Furthermore, two blue shaded areas correspond to intermediate input shares that can lead the
economy into multiple equilibria and are thus referred to as the “indeterminate region”. Multiple
equilibria can emerge either when the intermediate input share is too small or too large. When in-
termediate input share is too small, due to a relatively high fixed cost burden, intermediate firms are
bound by too tight financial constraints. When intermediate input share is too large, intermediate
firms that are subject to financial constraints are too large, and the size of aggregate financial multi-
plier is also large.
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Figure 3: Financial multiplier when altering the network structure, 𝜔2 = 0.5

3.3 Altering the Network Architecture

Another key target of this paper is to investigate the relevance of the production network structure
to economic instability. Consider the effect when we modify the network structure but hold other
aspects of the economy fixed. For computational convenience, we assume the following input-output
table:

α𝑆 = α𝑀ω =

[
𝛼𝑀 0
0 𝛼𝑀

] [
𝜔1 1 − 𝜔1

1 − 𝜔2 𝜔2

]
.

where the intermediate input share of a sector’s own good is 𝜔𝑖 . We fix 𝜔2 and alter 𝜔1. A higher
𝜔1 means that sector 1 is a more “self-reliant” than “dependent” sector. A higher 𝜔1 also means that
sectors are less interconnected. To isolate the effect of altering the network structure on the economy-
wide financial multiplier, we again fix 𝜙𝑖 so that the relative fixed cost size does not affect the financial
multiplier in this economy.

We illustrate how the aggregate financial multiplier changes when altering the network structure
in Figure 3.¹¹ On the horizontal axis, we vary the value of 𝜔1. On the vertical axis, we report the
economy-wide financial multiplier and all its decomposed effects. We address this question in three
steps.

First, when 𝜔1 rises, sector 1 becomes more “self-reliant” and reduces its dependence on sector
2. As a result, the relative importance of sector 1 (reflected by Domar weight 𝜆1) increases, while the
relative importance of sector 2 (reflected by Domar weight 𝜆2) is undermined. This is in line with the
“size effect”: the increase in 𝜔1 boosts the sales of sector 1 and reduces the sales of sector 2.

Second, as 𝜔1 increases, sector 1’s financial multiplier 𝜐1 decreases. This is due to the “diluting
effect”: the increase in sector 1’s sales makes the fixed cost in sector 1 become relatively less important

¹¹Parameters: 𝜙1 = 𝜙2 = 0.095, φ =
[
0.5 0.5

]′ , 𝜂 = 6, 𝛼𝑀 = 0.5, 𝑏 = 0.5, 𝛾 = 0,𝜓 = 1, 𝛿 = 0.025.
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and effectively relaxes the financial constraint in sector 1. For sector 2, the reversal property holds, so
the financial multiplier 𝜐2 is increasing in 𝜔1.

Third, the economy-wide financial multiplier 𝜚 is the Domar-weighted average of the sector-level
financial multiplier. The blue curve corresponds to the joint effects of the “size effect” and “diluting
effect” in sector 1. The blue curve is downward sloping, indicating that the “diluting effect” dominates
the “size effect” in sector 1. The reverse is true for sector 2; see the red, upward-sloping curve. Thus,
the combination of these two sectors’ weighted average financialmultiplier, or the black dashed curve,
exhibits a𝑈-shape. This helps us to see that when the network becomes more interconnected, it does
not necessarily lead to a higher level of financial multiplier 𝜚 . The trend of the financial multiplier is
determined by the relative forces of two sectors’ weighted financial multipliers.

4. CRITICAL SECTOR IN DRIVING SUNSPOT FLUCTUATIONS

We now use a numerical example to illustrate that in order to avoid self-fulfilling fluctuations, how
useful it is to relieve the financial constraints for sectors at different positions in the network. In par-
ticular, we tighten the financial constraints on different sectors and see which operation first triggers
economy-wide multiple equilibria. The parameters used in this numerical exercise are to match with
quarterly frequency¹². To simplify our discussion, we will focus on a two-sector economy.

Heterogeneous Financial Shocks. We are curious about whether some sectors’ financial constraints
are more influential than others on the financial stability of the entire economy. This question is
particularly relevantwhen the government has limited credit resources to allocate and has to prioritize
which sector to subsidize. We consider an asymmetric two-sector economy to demonstrate the relative
financial importance of different sectors in inducing self-fulfilling business cycles. For computational
convenience, we assume the following input-output table:

α𝑆 = α𝑀ω =

[
𝛼𝑀,1 0

0 𝛼𝑀,2

]
·
[
0.9 0.1
0.9 0.1

]
.

Sector 1 mainly uses its own product as the intermediate input, while sector 2 mainly uses the
other sector’s product as the intermediate input. Thus, in essence, sector 1 is in a more influential
position in this production network. We refer to sector 1 as the upstream industry and sector 2 as
the downstream industry. Now, given this network structure, we ask when financial shock hits one
of the sector, which one is more likely to trigger sunspot fluctuations. We want to see the interaction
between the asymmetric financial constraint and asymmetric production network. Other than the
contract enforcement level Θ𝑖 , both sectors are identical in fixed cost Φ𝑖 = Φ. For the sector not being
treated, we set Θ𝑖 = 1.

¹²Parameters: 𝜌ℎ = 0.01, 𝜌𝑒 = 0.02, 𝜘 = 0.3, 𝛼𝑀,𝑖 = 0.5, 𝛿 = 0.025, 𝛾 = 0, 𝜓 = 1, 𝜂𝑖 = 6, 𝜑 = [0.5 0.5].
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Figure 4: Aggregate financial multiplier when altering contract enforcement

We conduct two experiments by shocking sector 1 and sector 2’s credit market efficiency valuesΘ1

andΘ2, respectively. Figure 4 shows the results of these financial shock treatments. On the horizontal
axis, we vary the financial constraint of a chosen sector. On the vertical axis, we report the economy-
wide financial multiplier and its decomposition.

We begin with Figure 4a, which corresponds to the response of the economy-wide financial mul-
tiplier when tightening the financial constraint in the upstream sector 1. As the level of Θ1 moves
from 0.9 to 0.1, the working capital constraint is exogenously tightened. Consequently, the Domar-
weighted financial multiplier of the upstream sector increases; see the blue downward-sloping curve.
However, this is not the whole story: the downstream sector 2 is also affected through the input-
output linkages. In fact, the Domar-weighted financial multiplier of the downstream sector (𝜆2𝜐2) is
not only shifted but also shifted faster than that in sector 1; see the red, steeper downward-sloping
curve in the same graph. In this sense, treatment in the upstream sector can easily “alter” the financial
landscape in the downstream sector. The joint forces of the two sectors shape the economy-wide finan-
cial multiplier represented by the black dashed line, which is quite steep, suggesting a very sensitive
response of the economy-wide financial multiplier to the upstream sector’s financial constraint.

Instead, if we tighten the financial constraint in the downstream sector 2, which is shown in Figure
4b, the Domar-weighted financial multipliers 𝜆1𝜐1 and 𝜆2𝜐2 in the two sectors co-move – they both
increase in response to a negative sector 2 financial shock. However, since the downstream sector has a
lowDomarweight in this economy, an exogenous tightening of its financial constraint leads to aminor
change in its own sector; see the red, relatively flat line. Moreover, since sector 2 occupies a relatively
inferior node in the production network, it is less powerful in “altering” the financial landscape of
sector 1; see the blue, even flatter line. Consequently, the combination of two sectors’ effects leads to a
highly insensitive response by the economy-wide financialmultiplier, reflected by amuch flatter black
dashed line. We conclude that the upstream sector has a larger effect on the economy-wide financial
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Figure 5: Indeterminacy: financial shock to sectors with different levels of influence

multiplier. This also translates into a larger impact in inducing economy-wide instability.
Let us visualize how self-fulfilling fluctuations are connectedwith sector-level financial constraints

through Figure 5. The horizontal axis corresponds to different levels of fixed costs, and the vertical
axis corresponds to different levels of financial constraints in the treatment sector, holding the other
sector’s financial constraint fixed at 1; a lower Θ𝑖 means a tighter financial constraint. The red shaded
area is the set of (Θ1 ,Φ) pairs that can lead the economy to multiple equilibria if the financial shock
affects sector 1. On the other hand, the blue shaded area collects (Θ2 ,Φ) pairs that can drive the
economy to multiple equilibria if the financial shock takes effects on sector 2. We call these shaded
areas “indeterminate regions”(I.R.). The areas to the left of these two indeterminate regions, including
the indeterminate regions, are “admissible regions”.

Given one particular level of fixed cost Φ∗, if we tighten the financial constraint, i.e., decrease
Θ from 1 towards 0, then tightening the upstream sector’s financial constraint more easily drives
the economy into the “indeterminate region” than tightening the downstream sector’s financial con-
straint; the line with an arrow first reaches red shaded indeterminate region when Θ1 declines to
approximately 0.5 and then reaches the blue shaded “indeterminate region” when Θ2 declines to
approximately 0.2. This reveals the importance of financial abundance for the upstream sector in
stabilizing the economy. We conclude that if the government has limited resources and attention, it
should focus on improving financial market efficiency for upstream sectors.
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5. QUANTIFYING LIKELIHOOD OF MULTIPLE EQUILIBRIA

We now apply the theory to evaluate the likelihood of self-fulfilling business cycles in the US at an-
nual frequency. We discuss the main data source we rely on, and then describe the procedure we
go through to obtain the aggregate financial multiplier. Lastly, we show the patterns of financial
multiplier in the US economy which is a direct indicator for the likelihood of self-fulfilling business
cycles.

5.1 Data

After harmonizing among various data sources, the data covers the period of time from 1998 to 2020.
We use input-output account data by Bureau of Economic Analysis (BEA) for 15 sectors. These data
contains information on the uses of commodities by intermediate and final users. We use input-
output data to estimate the intermediate commodity input share 𝛼𝑆,𝑖𝑗𝑡 . In addition, we use integrated
industry-level production account (KLEMS) data by BEA for 63 industries. We aggregate 63 indus-
tries into 15 sectors according to NAICS classification as shown in details in appendix D. These data
provides information on industry level compensation on capital and labor, and information on in-
dustry level gross output. We use KLEMS data to estimate the labor share 𝛼𝐿,𝑖𝑡 and capital share
𝛼𝐾,𝑖𝑡 . Furthermore, we estimate the financial constraint for each sector using data by Compustat.
From Compustat data, we can collect information on firm level current debt, long term debt and as-
set value. As a result, we can construct firm level debt ratio which is the total debt over asset value.
The industry level debt ratio is computed through aggregating the firm level debt ratios weighted
by firm sales. For simplicity, we assume that firm will always borrow to the limit, thus the industry
level debt ratio is an approximation for the industry specific financial constraint 𝜃𝑖𝑡 . The details of the
quantitative exercise will be delegated to appendix D.

Other calibrated parameters are summarized in table 1. 𝜌ℎ is set at 0.04 to match the annual
household discount rate of 0.96. 𝜌𝑒 is set at 0.08 to match the annual entrepreneur discount rate
of 0.92. The annual capital depreciation rate is set at 0.1 and the Frisch elasticity is set to match the
micro evidence at 0.5.

5.2 Sunspot fluctuations

Figure 6 plots the time series of aggregate financial multiplier 𝜇 using red dots. Corresponding to
proposition 3.1, the blue shaded area represents the region of indeterminacy defined by 𝜇 ∈

[
𝜇, 𝜇

]
where 𝜇 = max

{
𝜇∗

1 , 𝜇
∗
2
}
and 𝜇 = 𝜇∗

3. As shown in the figure, our computed upper bound of the
indeterminacy region is too high to be relevant. On the other hand, the lower bound is given by the
blue line and expands indeterminacy region in the period of pre-2000, 2003 − 2007 and 2011 − 2014.
Meanwhile, the aggregate financialmultiplier is at high level in the period of pre- 2000 and 2007−2015.
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Table 1: Parameters used for quantitative exercise

Parameter Description Value

𝜌ℎ household discount rate 0.04
𝜌𝑒 entrepreneur discount rate 0.08
𝛿 capital depreciation rate 0.1
𝛾 inverse of Frisch elasticity 2
𝜓 effort disutility 1

Figure 6: Likelihood of self-fulfilling business cycles

Combining these two pieces of information, leading to higher likelihood of self-fulfilling business
cycles in period of pre-2000 (the Internet bubble boom) and around 2007− 2015 (the Global Financial
Crisis).

Figure 7 decomposes the “size effect” and “diluting effect” in shaping the self-fulfilling business
cycles. Recall that the aggregate financial multiplier is determined by υ and λ. Panel 7a sets the
sectoral financial multipliers υ at year 2020’s level and the variation in 𝜇 is driven by the change in
Domar weights λ. The red dots representing the aggregate financial multipliers do not fall into the
indeterminacy region in panel 7a, suggesting that “size effect” is not the main factor that leads to self-
fulfilling business cycles. On the other hand, panel 7b sets the Domar weights λ at year 2020’s level:
the variation in 𝜇 is all driven by the change in sectoral financial multiplier. The red dots fall into the
indeterminacy region in years roughly in accordance with that in figure 6, indicating that “diluting
effect” is the key driving force for the self-fulfilling business cycles.

The anatomy of the quantitative results shows that the sectoral financial multipliers play a more
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(a) Set sectoral financial multipliers υ at 2020 level (b) Set Domar weights λ at 2020 level

Figure 7: Decompose “size effect” and “diluting effect”

important role in exposing the economy to endogenous fluctuations. This explains why the aggre-
gate financial multiplier is higher and remains high after year 2007. Following the Global Financial
Crisis, the credit condition exacerbates for firms, resulting in high sectoral financial multipliers in the
following years.

6. CONCLUSION

Are certain production network weights and structures more likely to drive the economy into a self-
fulling equilibrium? Are certain sectors’ levels of financial market efficiency more important for the
economy’s stability? This paper makes a contribution in answering these questions.

In this paper, we develop a flexible and tractable framework that studies the interactions of finan-
cial frictions and input-output linkages and their joint impact on sunspot-driven fluctuations. In the
benchmark model, we incorporate the production network into a self-fulfilling business cycle model.
We show that the economy permits a simple but rich aggregation, which allows an analytical analysis
of the financial multiplier and network multiplier.

By introducing the production network, we investigate the endogenous aggregate financial multi-
plier and find that it is linked with the weight and structure of the production network. The impact of
the intermediate input share on the economy-wide financial multiplier is𝑈-shaped. In addition, mul-
tiple self-fulfilling equilibria can arise when we alter the network structure. We also show that when
tightening the credit constraint for a particular sector, its effect in terms of inducing self-fulfilling
business cycles hinges on the relative importance of this sector: a sector with higher Domar weight is
more likely to trigger sunspot-driven fluctuations after a financial depression. Then in the quantita-
tive exercise we evaluate the likelihood of self-fulfilling business cycles over the 22 years and find the
sectoral financial multiplier is the main reason that leads economy into sunspot fluctuations.

26



REFERENCES

ACEMOGLU, D., U. AKCIGIT, AND W. KERR (2016): “Networks and the macroeconomy: An empirical
exploration,” NBER Macroeconomics Annual, 30(1), 273–335.

ACEMOGLU, D., V. M. CARVALHO, A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2012): “The network origins of
aggregate fluctuations,” Econometrica, 80(5), 1977–2016.

ACEMOGLU, D., A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2015): “Systemic risk and stability in financial
networks,” American Economic Review, 105(2), 564–608.

ACHARYA, S., J. BENHABIB, AND Z. HUO (2021): “The anatomy of sentiment-driven fluctuations,” Journal
of Economic Theory, p. 105280.

ALTINOGLU, L. (2020): “The origins of aggregate fluctuations in a credit network economy,” Journal of
Monetary Economics.

ATALAY, E. (2017): “How important are sectoral shocks?,” American Economic Journal: Macroeconomics,
9(4), 254–80.

BAQAEE, D. R. (2018): “Cascading failures in production networks,” Econometrica, 86(5), 1819–1838.

BAQAEE, D. R., AND E. FARHI (2018): “Macroeconomics with heterogeneous agents and input-output
networks,” Discussion paper, National Bureau of Economic Research.

(2019): “The macroeconomic impact of microeconomic shocks: beyond Hulten’s Theorem,”
Econometrica, 87(4), 1155–1203.

(2020): “Productivity and misallocation in general equilibrium,” The Quarterly Journal of Eco-
nomics, 135(1), 105–163.

BASU, S., AND J. G. FERNALD (1995): “Are apparent productive spillovers a figment of specification
error?,” Journal of Monetary Economics, 36(1), 165–188.

(1997): “Returns to scale in US production: Estimates and implications,” Journal of political
economy, 105(2), 249–283.

BENHABIB, J., AND R. E. FARMER (1994): “Indeterminacy and increasing returns,” Journal of Economic
Theory, 63, 19–41.

(1996): “Indeterminacy and sector-specific externalities,” Journal of Monetary Economics, 37(3),
421–443.

27



BENHABIB, J., AND K. NISHIMURA (2012): “Indeterminacy and sunspots with constant returns,” in Non-
linear Dynamics in Equilibrium Models, pp. 311–346. Springer.

BENHABIB, J., AND P. WANG (2013): “Financial constraints, endogenous markups, and self-fulfilling
equilibria,” Journal of Monetary Economics, 60(7), 789–805.

BENHABIB, J., P. WANG, AND Y. WEN (2015): “Sentiments and aggregate demand fluctuations,” Econo-
metrica, 83(2), 549–585.

BENHABIB, J., AND Y. WEN (2004): “Indeterminacy, aggregate demand, and the real business cycle,”
Journal of Monetary Economics, 51(3), 503–530.

BIGIO, S., AND J. LA’O (2020): “Distortions in production networks,” The Quarterly Journal of Economics,
135(4), 2187–2253.

CARVALHO, V. M., M. NIREI, Y. U. SAITO, AND A. TAHBAZ-SALEHI (2021): “Supply chain disruptions:
Evidence from the great east japan earthquake,” The Quarterly Journal of Economics, 136(2), 1255–
1321.

CARVALHO, V. M., AND A. TAHBAZ-SALEHI (2019): “Production networks: A primer,” Annual Review of
Economics, 11, 635–663.

CHAHROUR, R., AND G. GABALLO (2017): “Learning from prices: amplification and business fluctua-
tions,” .

EGGERTSSON, G. B., AND P. KRUGMAN (2012): “Debt, deleveraging, and the liquidity trap: A Fisher-
Minsky-Koo approach,” The Quarterly Journal of Economics, 127(3), 1469–1513.

FARMER, R. E., AND J.-T. GUO (1994): “Real business cycles and the animal spirits hypothesis,” Journal
of Economic Theory, 63(1), 42–72.

FOERSTER, A. T., P.-D. G. SARTE, AND M. W. WATSON (2011): “Sectoral versus aggregate shocks: A struc-
tural factor analysis of industrial production,” Journal of Political Economy, 119(1), 1–38.

GABAIX, X. (2011): “The granular origins of aggregate fluctuations,” Econometrica, 79(3), 733–772.

GALÍ, J. (1993): “Monopolistic competition, business cycles and the composition of aggregate de-
mand,” .

GUERRIERI, V., ANDG. LORENZONI (2017): “Credit crises, precautionary savings, and the liquidity trap,”
The Quarterly Journal of Economics, 132(3), 1427–1467.

JERMANN, U., ANDV. QUADRINI (2012): “Macroeconomic effects of financial shocks,” American Economic
Review, 102(1), 238–71.

28



JONES, C. I. (2005): “The shape of production functions and the direction of technical change,” The
Quarterly Journal of Economics, 120(2), 517–549.

KIYOTAKI, N., AND J. MOORE (1997): “Credit cycles,” Journal of Political Economy, 105(2), 211–248.

LAGOS, R. (2006): “A model of TFP,” The Review of Economic Studies, 73(4), 983–1007.

LIU, E. (2019): “Industrial policies in production networks,” The Quarterly Journal of Economics, 134(4),
1883–1948.

LIU, Z., AND P.WANG (2014): “Credit constraints and self-fulfilling business cycles,” American Economic
Journal: Macroeconomics, 6(1), 32–69.

LONG, J. B., AND C. I. PLOSSER (1983): “Real business cycles,” Journal of Political Economy, 91(1), 39–69.

LUO, S. (2020): “Propagation of financial shocks in an input-output economy with trade and financial
linkages of firms,” Review of Economic Dynamics, 36, 246–269.

MANGIN, S. (2017): “A theory of production, matching, and distribution,” Journal of Economic Theory,
172, 376–409.

MOLL, B. (2014): “Productivity losses from financial frictions: Can self-financing undo capital misal-
location?,” American Economic Review, 104(10), 3186–3221.

OBERFIELD, E. (2018): “A theory of input–output architecture,” Econometrica, 86(2), 559–589.

SCHMITT-GROHÉ, S. (1997): “Comparing four models of aggregate fluctuations due to self-fulfilling
expectations,” Journal of Economic Theory, 72(1), 96–147.

WANG, P., ANDY.WEN (2008): “Imperfect competition and indeterminacy of aggregate output,” Journal
of Economic Theory, 143(1), 519–540.

WEN, Y. (1998): “Capacity utilization under increasing returns to scale,” Journal of Economic Theory,
81(1), 7–36.

29



Appendices

A. CHARACTERIZING THE ECONOMY

A. 1 Timing

Time is continuous. However, to provide a better illustration, we examine the results “within a givenmoment”.
Entrepreneurs first have to decide for each firmwhether to stay in business or exit. If they stay, a fixed operating
cost has to be paid. Only after the cost is paid are entrepreneurs able to observe each firm’s individual draw
of productivity. Seeing the productivity shock, the entrepreneurs then decide whether a firm will produce or
not based on the expected profit. If a firm operates, working capital is loaned to the firm. Once production is
completed, the entrepreneur chooses to repay or default on the working capital loan.

A. 2 Household Euler Equation

The current-value Hamiltonian for households is given by

ℋ (𝐾ℎ , 𝐶ℎ , 𝐿,𝜆) = log (𝐶ℎ) − 𝜓
𝐿1+𝛾
1 + 𝛾

+ 𝜆 [−𝛿𝐾ℎ + 𝑅𝐾ℎ +𝑊𝐿 − 𝐶ℎ] .

To generate the sufficient conditions for the optimum, following equations have to be satisfied,

ℋ (𝐾ℎ , 𝐶ℎ , 𝐿,𝜆)
𝐶

=
1
𝐶ℎ

− 𝜆 = 0,

ℋ (𝐾ℎ , 𝐶ℎ , 𝐿,𝜆)
𝐿

= −𝜓𝐿𝛾 + 𝜆𝑊 = 0,

¤𝜆 = 𝜌ℎ𝜆 − ℋ (𝐾ℎ , 𝐶ℎ , 𝐿,𝜆)
𝐾

= 𝜌ℎ𝜆 − 𝜆 [𝑅 − 𝛿] = 0.

These imply that household Euler equations are given by

¤𝐶ℎ
𝐶ℎ

= 𝑅 − 𝛿 − 𝜌ℎ , (A.1)

𝑊
𝐶ℎ

= 𝜓𝐿𝛾 . (A.2)

A. 3 Intermediate Firm Value and Working Capital Constraint

Profit. Define the profit of a firm 𝜄 in sector 𝑖 as Π𝑖𝑡(𝜄), which depends on the entrepreneur’s decision on the
firm being operative or inactive after observing the idiosyncratic shock 𝑍𝑖𝑡(𝜄),

Π𝑖𝑡(𝜄) = max
{O ,ℐ}

{ΠO ,𝑖𝑡(𝜄),Πℐ ,𝑖𝑡(𝜄)},

{O ,ℐ} denotes the choice between operating and staying idle. ΠO ,𝑖𝑡(𝜄) is the momentary profit of an operating
firm,

ΠO ,𝑖𝑡(𝜄) = max
𝐾𝑖𝑡 (𝜄),𝐿𝑖𝑡 (𝜄),𝑆𝑖 𝑗𝑡 (𝜄)

𝑃𝑖𝑡𝑂𝑖𝑡(𝜄) − 𝑅𝑡𝐾𝑖𝑡(𝜄) −𝑊𝑡𝐿𝑖𝑡(𝜄) −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄) −Φ𝑖 . (A.3)
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On the other hand, if the firm stays inactive for some period (because of a low productivity draw) but
remains in the business in the hope of becoming profitable later, the momentary “profit” (actually loss from
overhead costs) is Πℐ ,𝑖𝑡(𝜄),

Πℐ ,𝑖𝑡(𝜄) = −Φ𝑖 .

Continuation Value. Define𝑉𝑖𝑡 as the continuation value for the firm to stay in business, which is also the ex
ante value of a firm before paying the fixed cost. Let𝑉𝑖𝑡(𝜄) be an individual firm’s value; then,𝑉𝑖𝑡 =

∫
𝑉𝑖𝑡(𝜄)𝑑𝜄 =∫

𝑉(𝑍𝑖𝑡(𝜄))𝑑𝐹(𝑍𝑖𝑡(𝜄)). The continuation value takes the following recursive form:

𝑉𝑖𝑡 = −Φ𝑖 + max{𝑉ℐ ,𝑖𝑡(𝜄), 𝑉O ,𝑖𝑡(𝜄)}.

𝑉ℐ ,𝑖𝑡(𝜄) is the value of an inactive firm, and 𝑉O ,𝑖𝑡(𝜄) is the value of an operative firm. As there is no current
output, the value of an inactive firm 𝑉ℐ ,𝑖𝑡(𝜄) only comes from the future discounted value,

𝑉ℐ ,𝑖𝑡(𝜄) = max
{
𝑒−𝜌 𝑑𝑡E

[
Λ𝑒 ,𝑖𝑡+𝑑𝑡
Λ𝑒 ,𝑖𝑡

𝑉𝑖𝑡+𝑑𝑡
]
, 0

}
.

The stochastic discount factor is given by Λ𝑒 ,𝑖𝑡+𝑑𝑡
Λ𝑒 ,𝑖𝑡

, where Λ𝑒 ,𝑖𝑡 = 𝑢′(𝐶𝑒 ,𝑖𝑡) is the marginal utility of the en-
trepreneur owning sector 𝑖. The value of an operative firm 𝑉O ,𝑖𝑡(𝜄) comes from both current profit and future
value,

𝑉O ,𝑖𝑡(𝜄) = max {𝑉D ,𝑖𝑡(𝜄), 𝑉C ,𝑖𝑡(𝜄)} .
{D , C} denotes the choice between defaulting and committing. The value of a firm committing to its working
capital loan is 𝑉C ,𝑖𝑡(𝜄) and that of a defaulting firm is 𝑉D ,𝑖𝑡(𝜄).
Intermediate Firm Working Capital Constraint. Since firms have limited liability, the credit offered is
tailored to provide a sufficient repayment incentive. If the firm chooses to commit to the loan, its value is given
by

𝑉C ,𝑖𝑡(𝜄) = ©«𝑃𝑖𝑡𝑂𝑖𝑡(𝜄) − 𝑅𝑡𝐾𝑖𝑡(𝜄) −𝑊𝑡𝐿𝑖𝑡(𝜄) −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄)ª®¬ 𝑑𝑡 + max
{
𝑒−𝜌𝑒 𝑑𝑡

Λ𝑒 ,𝑖𝑡+𝑑𝑡
Λ𝑒 ,𝑖𝑡

𝑉𝑖𝑡+𝑑𝑡 , 0
}
.

If the firm chooses to default, then it can seize all the revenue at the risk of being caught. The event of being
caught is a Poisson process that arrives with intensity Θ𝑖 . Should a defaulting firm be caught, it is deprived of
all future access to credit; thus, the value of the defaulting firm is given by

𝑉D ,𝑖𝑡(𝜄) = 𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)𝑑𝑡 + (1 − Θ𝑖𝑑𝑡)max
{
𝑒−𝜌𝑒 𝑑𝑡

Λ𝑒 ,𝑖𝑡+𝑑𝑡
Λ𝑒 ,𝑖𝑡

𝑉𝑖𝑡+𝑑𝑡 , 0
}
.

To guarantee there is no default on the equilibrium path, the incentive compatibility (IC) condition requires
that 𝑉C ,𝑖𝑡(𝜄) ≥ 𝑉D ,𝑖𝑡(𝜄), i.e.,

Θ𝑖𝑒−𝜌𝑒 𝑑𝑡 max
{
Λ𝑒 ,𝑖𝑡+𝑑𝑡
Λ𝑒 ,𝑖𝑡

𝑉𝑖𝑡+𝑑𝑡 , 0
}
𝑑𝑡 ≥ ©«𝑅𝑡 𝑘𝑖𝑡 +𝑊𝑡 𝑙𝑖𝑡 +

𝑁∑
𝑗=1

𝑃𝑗𝑡 𝑠𝑖 𝑗𝑡
ª®¬ 𝑑𝑡.
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In the limit, the IC condition takes a very simple form:

𝑅𝑡𝐾𝑖𝑡(𝜄) +𝑊𝑡𝐿𝑖𝑡(𝜄) +
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄) ≤ Θ𝑖𝑉𝑖𝑡 ≡ 𝐵𝑖𝑡 . (A.4)

A. 4 Intermediate Firm Policy

We will show in Lemma 3 that with the presence of the working capital constraints, there exists a cutoff pro-
ductivity 𝑍∗

𝑖𝑡 for each sector, above which the firm participates in production; otherwise, the firm stays inactive.

Lemma 3. (Individual Firm Policy Functions) For each sector 𝑖, there exists a cutoff value 𝑍∗
𝑖𝑡 , such that firms’ optimal

capital input, labor input and intermediate goods input are given by

𝐾𝑖𝑡(𝜄) = 𝛼𝐾,𝑖𝐵𝑖𝑡
𝑅

1{𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡 } , 𝐿𝑖𝑡(𝜄) = 𝛼𝐿,𝑖𝐵𝑖𝑡

𝑊
1{𝑍𝑖𝑡 (𝜄)≥𝑍∗

𝑖𝑡 } , 𝑆𝑖 𝑗𝑡(𝜄) =
𝛼𝑆,𝑖𝑗𝐵𝑖𝑡
𝑃𝑗

1{𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡 } ,

and firms’ optimal borrowing amount and output are as follows:

𝐵𝑖𝑡(𝜄) = 𝐵𝑖𝑡1{𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡 } , 𝑂𝑖𝑡(𝜄) = 𝑍𝑖𝑡(𝜄)

𝑍∗
𝑖𝑡

𝐵𝑖𝑡
𝑃𝑖𝑡

1{𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡 } .

The cutoff productivity 𝑍∗
𝑖𝑡 is determined by

𝑍∗
𝑖𝑡 ≡

1
𝐴𝑖𝑡

(
𝑅𝑡/𝑃𝑖𝑡
𝛼𝐾,𝑖

)𝛼𝐾,𝑖 (𝑊𝑡/𝑃𝑖𝑡
𝛼𝐿,𝑖

)𝛼𝐿,𝑖 𝑁∏
𝑗=1

(
𝑃𝑗𝑡/𝑃𝑖𝑡
𝛼𝑆,𝑖𝑗

)𝛼𝑆,𝑖𝑗
.

Proof. Denote Π𝑖𝑡(𝜄) as the profit of firm 𝜄 in sector 𝑖

Π𝑖𝑡(𝜄) = max
𝐾𝑖𝑡 (𝜄),𝐿𝑖𝑡 (𝜄),𝑆𝑖 𝑗𝑡 (𝜄)

𝑃𝑖𝑡𝑂𝑖𝑡(𝜄) − 𝑅𝑡𝐾𝑖𝑡(𝜄) −𝑊𝑡𝐿𝑖𝑡(𝜄) −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄).

Given the capital rental rate 𝑅𝑡 , the wage rate𝑊𝑡 , and the vector of intermediate goods prices {𝑃𝑖𝑡}, if the
optimal choice is an interior solution, then the first order conditions lead to

𝐾𝑖𝑡(𝜄) = 𝜂𝑖𝛼𝑖𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)
𝑅𝑡

,

𝐿𝑖𝑡(𝜄) = 𝜂𝑖(1 − 𝛼𝑖)𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)
𝑊𝑡

,

𝑆𝑖 𝑗𝑡(𝜄) =
(1 − 𝜂𝑖)𝜛𝑖 𝑗𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)

𝑃𝑗𝑡
.

The necessary condition for interior solutions is

𝑂𝑖𝑡(𝜄) = 𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)
[(
𝜂𝑖𝛼𝑖𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)

𝑅𝑡

)𝛼𝑖 (𝜂𝑖(1 − 𝛼𝑖)𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)
𝑊𝑡

)1−𝛼𝑖 ]𝜂𝑖 
𝑁∏
𝑗=1

( (1 − 𝜂𝑖)𝜛𝑖 𝑗𝑃𝑖𝑡𝑂𝑖𝑡(𝜄)
𝑃𝑗𝑡

)𝜛𝑖 𝑗 
1−𝜂𝑖

.
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This necessary condition for interior solution implies that there exists an unique cutoff value for firm-specific
productivity shock 𝑍∗

𝑖𝑡 ,

𝑍∗
𝑖𝑡 =

1
𝐴𝑖𝑡

(
𝑅𝑡/𝑃𝑖𝑡
𝜂𝑖𝛼𝑖

)𝜂𝑖𝛼𝑖 ( 𝑊𝑡/𝑃𝑖𝑡
𝜂𝑖(1 − 𝛼𝑖)

)𝜂𝑖 (1−𝛼𝑖 ) 𝑁∏
𝑗=1

(
𝑃𝑗𝑡/𝑃𝑖𝑡

(1 − 𝜂𝑖)𝜛𝑖 𝑗

) (1−𝜂𝑖 )𝜛𝑖 𝑗
.

If a firm has unlimited access to the credit market, then it will produce infinite amount if its draw of firm
specific productivity 𝑍𝑖𝑡(𝜄) > 𝑍∗

𝑖𝑡 , while stay out of production if 𝑍𝑖𝑡(𝜄) < 𝑍∗
𝑖𝑡 . And Any amount of production

can be supported if 𝑍𝑖𝑡(𝜄) = 𝑍∗
𝑖𝑡 .

The idea behind is very simple. The marginal revenue of producing one unit of intermediate goods is 𝑃𝑖𝑡 ,
while the corresponding marginal cost is denoted by Ψ𝑖𝑡(𝜄)

Ψ𝑖𝑡(𝜄) = 1
𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)

(
𝑅𝑡
𝛼𝐾,𝑖

)𝛼𝑘,𝑖 ( 𝑊𝑡

𝛼𝐿,𝑖

)𝛼𝐿,𝑖 𝑁∏
𝑗=1

(
𝑃𝑗𝑡
𝛼𝑆,𝑖𝑗

)𝛼𝑆,𝑖𝑗
,

where 𝛼𝐾,𝑖 = 𝜂𝑖𝛼𝑖 , 𝛼𝐿,𝑖 = 𝜂𝑖(1 − 𝛼𝑖), 𝛼𝑆,𝑖𝑗 = (1 − 𝜂𝑖)𝜛𝑖 𝑗 . The individual firm will only participate in production
if their marginal cost of producing does not exceed their marginal revenue.

With the presence of credit constraints, the gross production expense is capped by the borrowing limit
𝐵𝑖𝑡 . The borrowing limit effectively controls the scale of production for firm whose productivity exceeds the
threshold 𝑍∗

𝑖 . Given a borrowing limit 𝐵𝑖 , the total expenses are fixed. Then the individual firm output is given
by

𝑂𝑖𝑡(𝜄) = 𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)

(
𝛼𝐾,𝑖𝐵𝑖𝑡
𝑅𝑡

)𝛼𝐾,𝑖 (
𝛼𝐿,𝑖𝐵𝑖𝑡
𝑊𝑡

)
𝛼𝐿,𝑖

𝑁∏
𝑗=1

(
𝛼𝑆,𝑖𝑗𝐵𝑖𝑡
𝑃𝑗𝑡

)𝛼𝑆,𝑖𝑗  =
𝑍𝑖𝑡(𝜄)
𝑍∗
𝑖𝑡

𝐵𝑖𝑡
𝑃𝑖𝑡

.

A. 5 Expenditure Share: Sector-level and Aggregate-level

Themarginal cost of intermediate goods input 𝑖must be equal to its marginal benefit in final goods production,

𝑋𝑖𝑡 =
𝜑𝑖𝑌𝑡
𝑃𝑖𝑡

. (A.5)

Moreover, from (A.5), sector 𝑖’s sales to final goods producers are a fraction of its total sales, 𝑋𝑖𝑡 =
𝜑𝑖

�̃�𝑖𝑡
𝑂𝑖𝑡 .

Sector Aggregation. We can examine the allocation of resources across firms. Define the sector-level aggre-
gate inputs as 𝐾𝑖𝑡 , 𝐿𝑖𝑡 , 𝑆𝑖 𝑗𝑡 and sector-level output as 𝑂𝑖𝑡 . By the law of large numbers, the sector-level variables
are given by

𝐾𝑖𝑡 = (1 − 𝐹𝑖(𝑍∗
𝑖𝑡))

𝛼𝐿,𝑖𝐵𝑖𝑡
𝑅

, 𝐿𝑖𝑡 = (1 − 𝐹𝑖(𝑍∗
𝑖𝑡))

𝛼𝐿,𝑖𝐵𝑖𝑡
𝑊

, 𝑆𝑖 𝑗𝑡 = (1 − 𝐹𝑖(𝑍∗
𝑖𝑡))

𝛼𝑆,𝑖𝑗𝐵𝑖𝑡
𝑃𝑗

,

𝑂𝑖𝑡 =
∫

𝑍𝑖𝑡(𝜄)
𝑍∗
𝑖𝑡

𝐵𝑖𝑡
𝑃𝑖𝑡

𝑑𝜄 =
𝐵𝑖𝑡
𝑃𝑖𝑡𝑍∗

𝑖𝑡

∫
𝑍∗
𝑖𝑡

𝑍𝑖𝑡(𝜄)𝑑𝐹(𝑍𝑖𝑡(𝜄)). (A.6)
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Given the sector input
{
𝐾𝑖𝑡 , 𝐿𝑖𝑡 , 𝑆𝑖 𝑗𝑡

}
, the sector output can also be written as

𝑂𝑖𝑡 =
∫ 1

0
𝐴𝑖𝑡𝑍𝑖𝑡(𝜄)

𝐾𝑖𝑡(𝜄)𝛼𝐾,𝑖𝐿𝑖𝑡(𝜄)𝛼𝐿,𝑖
𝑁∏
𝑗=1

𝑆
𝛼𝑆,𝑖𝑗
𝑖 𝑗𝑡

 𝑑𝜄 = 𝐴𝑖𝑡 · 𝐾𝛼𝐾,𝑖
𝑖𝑡 𝐿𝛼𝐿,𝑖𝑖𝑡

𝑁∏
𝑗=1

𝑆
𝛼𝑆,𝑖𝑗
𝑖 𝑗𝑡 , (A.7)

where we denote 𝐴𝑖𝑡 = 𝐴𝑖𝑡E𝑖
(
𝑍𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗

𝑖𝑡

)
> 𝐴𝑖𝑡 as the endogenous sector-specific productivity.

Sector Expenditure Shares. Sector 𝑖’s expenditures on inputs from sector 𝑗 are𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 . Sector 𝑖’s expenditure
from sector 𝑗 is a fraction of sector 𝑖’s revenue, and accordingly, one can see that sector 𝑖’s expenditures on
intermediate goods, labor and capital are given by

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 = �̃�𝑆,𝑖𝑗𝑡𝑃𝑖𝑡𝑂𝑖𝑡 , 𝑊𝑡𝐿𝑖𝑡 = �̃�𝐿,𝑖𝑡𝑃𝑖𝑡𝑂𝑖𝑡 , 𝑅𝑡𝐾𝑖𝑡 = �̃�𝐾,𝑖𝑡𝑃𝑖𝑡𝑂𝑖𝑡 , (A.8)

where �̃�𝑆,𝑖𝑗𝑡 ≡ 𝛼𝑆,𝑖𝑗
𝑍∗
𝑖𝑡

E𝑖(𝑍𝑖𝑡 (𝜄)|𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡) , �̃�𝐿,𝑖𝑡 ≡ 𝛼𝐿,𝑖

𝑍∗
𝑖𝑡

E𝑖(𝑍𝑖𝑡 (𝜄)|𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡) , �̃�𝐾,𝑖𝑡 ≡ 𝛼𝐾,𝑖

𝑍∗
𝑖𝑡

E𝑖(𝑍𝑖𝑡 (𝜄)|𝑍𝑖𝑡 (𝜄)≥𝑍∗
𝑖𝑡) are defined as en-

dogenous expenditure shares.

Final Expenditure Shares. The economy-wide aggregate demands for labor and capital are given by

𝐿𝑡 =
𝑁∑
𝑖=1

𝐿𝑖𝑡 =
𝑁∑
𝑖=1

�̃�𝐿,𝑖𝑡
𝑃𝑖𝑡𝑂𝑖𝑡

𝑌𝑡

𝑌𝑡
𝑊𝑡

= 𝛼𝐿,𝑡
𝑌𝑡
𝑊𝑡

, (A.9)

𝐾𝑡 =
𝑁∑
𝑖=1

𝐾𝑖𝑡 =
𝑁∑
𝑖=1

�̃�𝐾,𝑖𝑡
𝑃𝑖𝑡𝑂𝑖𝑡

𝑌𝑡

𝑌𝑡
𝑅𝑡

= 𝛼𝐾,𝑡
𝑌𝑡
𝑅𝑡
. (A.10)

Let 𝛼𝐿,𝑡 , 𝛼𝐾,𝑡 be the total expenditure shares of labor and capital,

𝛼𝐿,𝑡 ≡ λ̃
′
𝑡α̃𝐿,𝑡 , 𝛼𝐾,𝑡 ≡ λ̃

′
𝑡α̃𝐾,𝑡 ,

A. 6 The Law of Motion for Aggregate Capital

Note that, the aggregate law of motion of 𝐾𝑡 is given by

¤𝐾𝑡 = −𝛿𝐾𝑡 + 𝐼𝑡 ,

where 𝐾𝑡 = 𝐾ℎ,𝑡 + ∑𝑁
𝑖=1 𝐾𝑒 ,𝑖𝑡 , and 𝐼𝑡 = 𝐼ℎ,𝑡 + ∑𝑁

𝑖=1 𝐼𝑒 ,𝑖𝑡 and 𝐼𝑡 can be obtained from the aggregate resource
constraint

𝐼𝑡 = 𝑌𝑡 −
𝑁∑
𝑖=1

Φ𝑖 − 𝐶ℎ,𝑡 − 𝐶𝑒 ,𝑡 ,

and thus aggregate entrepreneur’s consumption is given by aggregate budget constraint, and by final ex-
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penditure share (A.9) and (A.10),

𝐶𝑒 ,𝑡 =
𝑁∑
𝑖=1

𝐶𝑒 ,𝑖𝑡

=
𝑁∑
𝑖=1

𝑃𝑖𝑡𝑂𝑖𝑡 − 𝑅𝑡𝐾𝑖𝑡 −𝑊𝑡𝐿𝑖𝑡 −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 −Φ𝑖


=

𝑁∑
𝑖=1

𝑃𝑖𝑡 ©«𝑋𝑖𝑡 +
𝑁∑
𝑗=1

𝑆 𝑗𝑖𝑡
ª®¬ − 𝑅𝑡𝐾𝑖𝑡 −𝑊𝑡𝐿𝑖𝑡 −

𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 −Φ𝑖


=

𝑁∑
𝑖=1

𝑃𝑖𝑡𝑋𝑖𝑡 −𝑊𝑡𝐿𝑡 − 𝑅𝑡𝐾𝑡 −
𝑁∑
𝑖=1

Φ𝑖

=
𝑁∑
𝑖=1

𝑃𝑖𝑡
𝜑𝑖𝑌𝑡
𝑃𝑖𝑡

−𝑊𝑡𝐿𝑡 − 𝑅𝑡𝐾𝑡 −
𝑁∑
𝑖=1

Φ𝑖

= 𝑌𝑡 −𝑊𝑡𝐿𝑡 − 𝑅𝑡𝐾𝑡 −
𝑁∑
𝑖=1

Φ𝑖

=
(
1 − λ̃

′
𝑡α̃𝐾,𝑡 − λ̃

′
𝑡α̃𝐿,𝑡

)
𝑌𝑡 −

𝑁∑
𝑖=1

Φ𝑖

= (1 − 𝛼𝐾,𝑡 − 𝛼𝐿,𝑡)𝑌𝑡 −
𝑁∑
𝑖=1

Φ𝑖 .

Consequently, the mapping between ¤𝐾𝑡 and 𝐾𝑡 can be obtained as

¤𝐾𝑡 = −𝛿𝐾𝑡 + (𝛼𝐾,𝑡 + 𝛼𝐿,𝑡)𝑌𝑡 − 𝐶ℎ,𝑡 .

B. PROOFS

B. 1 Proof of Proposition 2.1

Proof. Recall from collateral constraint (A.4),
𝐵𝑖𝑡 = Θ𝑖𝑉𝑖𝑡 .

Note that from Section 2, 𝑉𝑖𝑡 =
∫
𝑉𝑖𝑡(𝜄)𝑑𝜄 =

∫
𝑉(𝑍𝑖𝑡(𝜄))𝑑𝐹(𝑍𝑖𝑡(𝜄)) denotes the ex ante value of the firm.

Obviously 𝑉𝑖𝑡 is also the continuation value of sector 𝑖 which is the present value of the firm. From (2.5) and
(2.6), 𝐶𝑒 ,𝑖𝑡 = 𝐷𝑒 ,𝑖𝑡 =

∫ 1
0 Π𝑖𝑡(𝜄)𝑑𝜄, 𝑉𝑖𝑡 is given by

𝑉𝑖𝑡 =
∫ 1

0

(∫ ∞

𝑡
𝑒−𝜌𝑒 (𝑠−𝑡)

𝑢′(𝐶𝑒 ,𝑖𝑠)
𝑢′(𝐶𝑒 ,𝑖𝑡)Π𝑒 ,𝑖𝑠(𝜄)𝑑𝑠

)
𝑑𝜄 =

∫ ∞

𝑡
𝑒−𝜌𝑒 (𝑠−𝑡)

𝐶𝑒 ,𝑖𝑡
𝐶𝑒 ,𝑖𝑠

(∫ 1

0
Π𝑒 ,𝑖𝑠(𝜄)𝑑𝜄

)
𝑑𝑠 =

𝐶𝑒 ,𝑖𝑡
𝜌𝑒

.

In the equilibrium, 𝐶𝑒 ,𝑖𝑡 is the aggregate dividends payment fromall firms. Andby sectoral demandderived
earlier (A.8) as well as the definition of Domar Weight, the consumption of sector 𝑖 entrepreneur is related to
the final output in the following way,
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𝐶𝑒 ,𝑖𝑡 =
∫ 1

0
Π𝑖𝑡(𝜄)𝑑𝜄 =

∫ 1

0

©«𝑃𝑖𝑡𝑂𝑖𝑡(𝜄) − 𝑅𝑡𝐾𝑖𝑡(𝜄) −𝑊𝑡𝐿𝑖𝑡(𝜄) −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡(𝜄) −Φ𝑖
ª®¬ 𝑑𝜄

= 𝑃𝑖𝑡𝑂𝑖𝑡 − 𝑅𝑡𝐾𝑖𝑡 −𝑊𝑡𝐿𝑖𝑡 −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑆𝑖 𝑗𝑡 −Φ𝑖

= 𝑃𝑖𝑡𝑂𝑖𝑡
©«1 − �̃�𝐾,𝑖𝑡 − �̃�𝐿,𝑖𝑡 −

𝑁∑
𝑗=1

�̃�𝑆,𝑖𝑗𝑡
ª®¬ −Φ𝑖

= 𝜉(𝑍∗
𝑖𝑡)𝑌𝑡 −Φ𝑖 .

Note that since �̃�𝐾,𝑖𝑡 , �̃�𝐿,𝑖𝑡 , �̃�𝑆,𝑖𝑗𝑡 , �̃�𝑖𝑡 are all functions of 𝑍∗
𝑡 , so is 𝜉.c

𝜉(𝑍∗
𝑖𝑡) = �̃�𝑖𝑡

©«1 − �̃�𝐾,𝑖𝑡 − �̃�𝐿,𝑖𝑡 −
𝑁∑
𝑗=1

�̃�𝑆,𝑖𝑗𝑡
ª®¬ .

Therefore, the sectoral debt limit is related to the final output as such,

𝐵𝑖𝑡
𝑌𝑡

=
Θ
𝜌𝑒 𝑖

[
𝜉

(
𝑍∗
𝑖𝑡

) − Φ𝑖

𝑌𝑡

]
≡ 𝑓 (𝑍∗

𝑖𝑡)

We will show that with 𝑌𝑡 given, 𝜉
(
𝑍∗
𝑖𝑡

)
is a weakly decreasing function in 𝑍∗

𝑖𝑡 and so is 𝑓 (𝑍∗
𝑖𝑡). For now, denote

𝜈𝑖 = E𝑖

(
𝑍𝑖𝑡
𝑍∗
𝑖

|𝑍𝑖𝑡 ≥ 𝑍∗
𝑖𝑡

)
.

𝜉𝑖 =
∞∑
𝑘=0

(
α̃′

𝑺,𝒕

) 𝑘
φ

(
1 − 1

𝜈𝑖

)
On the other hand, if we look from credit demand side, (A.6) shows that loan-to-GDP ratio is related to

cutoff productivity 𝑍∗
𝑡 ,

𝐵𝑖𝑡
𝑌𝑡

=
�̃�𝑖𝑡𝑍∗

𝑖𝑡∫
𝑍∗
𝑖𝑡
𝑍𝑖𝑡(𝜄)𝑑𝐹(𝑍𝑖𝑡(𝜄))

≡ 𝑔(𝑍∗
𝑖𝑡).

Notice that 𝑔(𝑍∗
𝑖𝑡) is an increasing function is 𝑍∗

𝑖 . As �̃�𝑖𝑡 is weakly increasing in 𝑍∗
𝑖𝑡 . Whereas 𝑍∗

𝑖𝑡∫
𝑍∗𝑖𝑡

𝑍𝑖𝑡 (𝜄)𝑑𝐹(𝑍𝑖𝑡 (𝜄)) =

1

E𝑖

(
𝑍𝑖𝑡
𝑍∗𝑖

|𝑍𝑖𝑡≥𝑍∗
𝑖𝑡

)
(1−𝐹(𝑍∗

𝑖𝑡 ))
, where E𝑖

(
𝑍𝑖𝑡
𝑍∗
𝑖

|𝑍𝑖𝑡 ≥ 𝑍∗
𝑖𝑡

)
is weakly decreasing in 𝑍∗

𝑖𝑡 , and
(
1 − 𝐹(𝑍∗

𝑖𝑡)
)
is decreasing in 𝑍∗

𝑖𝑡

too.
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B. 2 Proof of Proposition 2.2

Proof. Recall from (A.7) that the sector output is,

𝑂𝑖𝑡 = 𝐴𝑖𝑡E𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

) · 𝐾𝛼𝐾,𝑖
𝑖𝑡 𝐿𝛼𝐿,𝑖𝑖𝑡

𝑁∏
𝑗=1

𝑆
𝛼𝑆,𝑖𝑗
𝑖 𝑗𝑡 , (B.1)

and from (A.8) that demand for intermediate goods 𝑗 is,

𝑆𝑖 𝑗𝑡 = �̃�𝑆,𝑖𝑗𝑡
𝑃𝑖𝑡𝑂𝑖𝑡

𝑃𝑗𝑡
= �̃�𝑆,𝑖𝑗𝑡

𝑃𝑖𝑡𝑂𝑖𝑡/𝑌𝑡
𝑃𝑗𝑡𝑂 𝑗𝑡/𝑌𝑡 𝑂 𝑗𝑡 = �̃�𝑆,𝑖𝑗𝑡

�̃�𝑖𝑡

�̃� 𝑗𝑡
𝑂 𝑗𝑡 ,

If we take log on both sides of equation (B.1),

ln𝑂𝑖𝑡 = lnE𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

) + ln𝐴𝑖𝑡

+ 𝛼𝐾,𝑖 ln𝐾𝑖𝑡 + 𝛼𝐿,𝑖 ln 𝐿𝑖𝑡 +
𝑁∑
𝑗=1

𝛼𝑆,𝑖𝑗 ln 𝑆𝑖 𝑗𝑡

= lnE𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

) + ln𝐴𝑖𝑡

+ 𝛼𝐾,𝑖 ln 𝑘𝑖𝑡 + 𝛼𝐿,𝑖 ln 𝑙𝑖𝑡 +
𝑁∑
𝑗=1

𝛼𝑆,𝑖𝑗 ln

(
�̃�𝑆,𝑖𝑗𝑡

�̃�𝑖𝑡

�̃� 𝑗𝑡

)
+ 𝛼𝐾,𝑖 ln𝐾𝑡 + 𝛼𝐿,𝑖 ln 𝐿𝑡 +

𝑁∑
𝑗=1

𝛼𝑆,𝑖𝑗 ln𝑂 𝑗𝑡 ,

Then we know that
lnO𝑡 = ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 +α𝑆 lnO𝑡 + c𝑜𝑡 ,

where an entry in ã𝑡 is
�̃�𝑖𝑡 ≡ lnE𝑖

(
𝑍𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗

𝑖𝑡

) + ln𝐴𝑖𝑡 , (B.2)

and an entry in c𝑜𝑡 is

𝑐𝑜𝑖𝑡 ≡ 𝛼𝐾,𝑖 ln 𝑘𝑖𝑡 + 𝛼𝐿,𝑖 ln 𝑙𝑖𝑡 +
𝑁∑
𝑗=1

𝛼𝑆,𝑖𝑗 ln

(
�̃�𝑆,𝑖𝑗𝑡

�̃�𝑖𝑡

�̃� 𝑗𝑡

)
.

In turn, the sector output can be expressed as follows,

lnO𝑡 = (I −αS)−1 (
ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 + c𝑜𝑡

)
=

[ (
I −α′

S

)−1
] ′ (

ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 + c𝑜𝑡
)

= 𝚿′
𝑡

(
ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 + c𝑜𝑡

)
.

Since �̃�𝑖𝑡 = 𝑃𝑖𝑡𝑂𝑖𝑡
𝑌𝑡

=
𝜑 𝑗𝑂𝑖𝑡

𝑋𝑖𝑡
, we know that

ln𝑋𝑖𝑡 = ln𝑂𝑖𝑡 + ln
(
𝜑𝑖

�̃�𝑖𝑡

)
,
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more compactly,
lnX𝑡 = lnO𝑡 + c𝑥𝑡 ,

where 𝑐𝑥𝑖𝑡 = ln
(
𝜑𝑖

�̃�𝑖𝑡

)
. Also by final goods production function 𝑌𝑡 =

𝑁∏
𝑖=1
𝑋𝜑𝑖
𝑖𝑡 ,

ln𝑌𝑡 =
𝑁∑
𝑗=1

𝜑 𝑗 ln𝑋𝑗𝑡

= φ′ lnX𝑡

= φ′ lnO𝑡 +φ′c𝑥𝑡
= φ′𝚿′

𝑡

(
ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 + c𝑜𝑡

) +φ′c𝑥𝑡
= λ′

𝑡

(
ã𝑡 +α𝐾 ln𝐾𝑡 +α𝐿 ln 𝐿𝑡 + c𝑜𝑡

) +φ′c𝑥𝑡 ,

and by (B.2),

λ′
𝑡ã𝑡 =

𝑁∑
𝑖=1

𝜆𝑖 �̃�𝑖𝑡 =
𝑁∑
𝑖=1

ln
(
𝐴𝑖𝑡E𝑖

(
𝑍𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗

𝑖𝑡

) )𝜆𝑖 = ln

[
𝑁∏
𝑖=1

(
𝐴𝑖𝑡E𝑖

(
𝑍𝑖𝑡 |𝑍𝑖𝑡 ≥ 𝑍∗

𝑖𝑡

) )𝜆𝑖 ] .
Combine these together, we get aggregate output,

𝑌𝑡 = 𝐴𝑡𝐾
λ′α𝐾
𝑡 𝐿λ

′α𝐿
𝑡 ,

where

𝐴𝑡 = exp
[
λ′
𝑡ã𝑡

(
Z∗
𝑡

) + λ′c𝑜𝑡
(
Z∗
𝑡

) +φ′c𝑥𝑡
(
Z∗
𝑡

) ]
=

𝑁∏
𝑖=1

𝐴𝑖𝑡E𝑖
(
𝑍𝑖𝑡(𝜄)|𝑍𝑖𝑡(𝜄) ≥ 𝑍∗

𝑖𝑡

)
𝑘𝛼𝐾,𝑖𝑖𝑡 𝑙𝛼𝐿,𝑖𝑖𝑡

𝑁∏
𝑗=1

(
�̃�𝑆,𝑖𝑗𝑡

�̃�𝑖𝑡

�̃� 𝑗𝑡

)𝛼𝑆,𝑖𝑗 
𝜆𝑖

·
𝑁∏
𝑖=1

(
𝜑𝑖

�̃�𝑖𝑡

)𝜑𝑖
.

Notice that the factor intensities add up to 1,

λ′α𝐾 + λ′α𝐿 = λ′ (α𝐾 +α𝐿)
= φ′ (I −α𝑆)−1 (α𝐾 +α𝐿)

= φ′
∞∑
𝑛=0

α𝑛
𝑆 (1 −α𝑆1)

= φ′1 +φ′
∞∑
𝑛=1

α𝑛
𝑆1 −φ′

∞∑
𝑛=0

α𝑛
𝑆α𝑆1

= φ′1 = 1.

Besides, note that since the idiosyncratic productivities conform to the Pareto distribution, �̃�𝑆,𝑖𝑗𝑡 , �̃�𝐿,𝑖𝑡 , �̃�𝐾,𝑖𝑡 ,
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�̃�𝑖𝑡 , 𝜆𝑖𝑡 , 𝜉𝑖𝑡 , 𝑘𝑖𝑡 , 𝑙𝑖𝑡 , 𝛼𝐾 , 𝛼𝐿 are all constants such that

�̃�𝑆,𝑖𝑗 = 𝛼𝑆,𝑖𝑗𝑍 𝑖 , �̃�𝐿,𝑖 = 𝛼𝐿,𝑖𝑍 𝑖 , �̃�𝐾,𝑖 = 𝛼𝐾,𝑖𝑍 𝑖 ,

𝑘𝑖 =
𝐾𝑖𝑡
𝐾𝑡

=
�̃�𝐾,𝑖�̃�𝑖∑𝑁
𝑖=1 �̃�𝐾,𝑖�̃�𝑖

, 𝑙𝑖 =
𝐿𝑖𝑡
𝐿𝑡

=
�̃�𝐿,𝑖�̃�𝑖∑𝑁
𝑖=1 �̃�𝐿,𝑖�̃�𝑖

.

Similarly, the firms’ expected profit not excluding fixed costs is also a constant,

𝜉𝑖 =

1 − ©«𝛼𝐾,𝑖 + 𝛼𝐿,𝑖 +
𝑁∑
𝑗=1

𝛼𝑆,𝑖𝑗
ª®¬𝑍 𝑖

 �̃�𝑖 =
(
1 − 𝑍 𝑖

)
�̃�𝑖 = �̃�𝑖/𝜂𝑖 .

B. 3 Proof of Lemma 1

Proof. In this appendix we will show how we log linearize the 𝑍∗
𝑖 − 𝑌 system.

Denote �̂�𝑡 = log𝑋𝑡 − log𝑋, so that 𝑋𝑡 = 𝑋(1 + �̂�𝑡). Also, when 𝑋 → 0, we have exp𝑋 = 1 + 𝑋.

𝑍∗
𝑖𝑡 =

[
Θ𝑖𝑡

𝜌𝑒(𝜂𝑖 − 1)
(
1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

)]1/𝜂𝑖
𝑍 𝑖 ,

Linearizing above equation around the steady state, denote 𝑋𝑡 = Θ𝑖𝑡
𝜌𝑒 (𝜂𝑖−1) − Θ𝑖𝑡

𝑌𝑡
𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒 (𝜂𝑖−1) ,

𝑍∗
𝑖 (1 + 𝑍∗

𝑖𝑡) = 𝑋1/𝜂𝑖
(
1 + 𝑋𝑡

) 1
𝜂𝑖 𝑍 𝑖

= 𝑋1/𝜂𝑖
(
exp𝑋𝑡

) 1
𝜂𝑖 𝑍 𝑖

= 𝑋1/𝜂𝑖 exp
(

1
𝜂𝑖
𝑋𝑡

)
𝑍 𝑖

= 𝑋1/𝜂𝑖
(
1 + 1

𝜂𝑖
𝑋𝑡

)
𝑍 𝑖 .

Since in the steady state, the equation degenerate into

𝑍∗
𝑖 = 𝑋1/𝜂𝑖𝑍 𝑖 .

Thus we have
𝑍∗
𝑖𝑡 =

1
𝜂𝑖
𝑋𝑡 .
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On the other hand,

𝑋(1 + 𝑋𝑡) = Θ
𝜌𝑒(𝜂𝑖 − 1)

(
1 + Θ̂𝑖𝑡

)
− Θ
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)
1 + Θ̂𝑖𝑡

1 + 𝑌𝑡
=

Θ
𝜌𝑒(𝜂𝑖 − 1)

(
1 + Θ̂𝑖𝑡

)
− Θ
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)
exp Θ̂𝑖𝑡

exp𝑌𝑡

=
Θ

𝜌𝑒(𝜂𝑖 − 1)
(
1 + Θ̂𝑖𝑡

)
− Θ
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1) exp
(
Θ̂𝑖𝑡 − 𝑌𝑡

)
=

Θ
𝜌𝑒(𝜂𝑖 − 1)

(
1 + Θ̂𝑖𝑡

)
− Θ
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)
(
1 + Θ̂𝑖𝑡 − 𝑌𝑡

)
.

Again in the steady state,

𝑋 =
Θ𝑖

𝜌𝑒(𝜂𝑖 − 1) −
Θ𝑖

𝑌
𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1) .

Then we can get linearized equation,

𝑋𝑋𝑡 =
Θ𝑖

𝜌𝑒(𝜂𝑖 − 1) Θ̂𝑖𝑡 − Θ𝑖

𝑌
𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)
(
Θ̂𝑖𝑡 − 𝑌𝑡

)
.

𝑋𝑡 = Θ̂𝑖𝑡 + Θ𝑖

𝑋𝑌
𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)
In turn we have,

𝑍∗
𝑖𝑡 =

1
𝜂𝑖

[
Θ̂𝑖𝑡 + Θ𝑖

𝑋𝑌
𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒(𝜂𝑖 − 1)𝑌𝑡
]

=
1
𝜂𝑖

Θ̂𝑖𝑡 +
Θ𝑖
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒 (𝜂𝑖−1)
Θ𝑖

𝜌𝑒 (𝜂𝑖−1) − Θ𝑖
𝑌

𝜂𝑖Φ𝑖

�̃�𝑖𝜌𝑒 (𝜂𝑖−1)
𝑌𝑡


=

1
𝜂𝑖

[
Θ̂𝑖𝑡 + 𝜂𝑖Φ𝑖

𝑌�̃�𝑖 − 𝜂𝑖Φ𝑖

𝑌𝑡

]
=

1
𝜂𝑖
Θ̂𝑖𝑡 + 𝜐𝑖𝑌𝑡 ,

where

𝜐𝑖 =
Φ𝑖

𝑌�̃�𝑖 − 𝜂𝑖Φ𝑖

=
𝜙𝑖

�̃�𝑖 − 𝜂𝑖𝜙𝑖
=

(
�̃�𝑖𝑌
Φ𝑖

− 𝜂𝑖

)−1

.

Since we assume that the credit tightness is fixed at Θ𝑖 , the log-linearized cutoff productivity degenerates
into

𝑍∗
𝑖𝑡 = 𝜐𝑖𝑌𝑡 .

Now we log-linearize the aggregate production function

𝑌𝑡 = 𝜁
𝑁∏
𝑖=1

[
𝐴𝑖𝑡

𝑍∗
𝑖𝑡

𝑍 𝑖

]𝜆𝑖
𝐾
𝛼𝐾
𝑡 𝐿

𝛼𝐿
𝑡 .
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Take log on both sides,

log𝑌𝑡 = log 𝜁 +
𝑁∑
𝑖=1

𝜆𝑖
[
log𝐴𝑖𝑡 + log𝑍∗

𝑖𝑡 − log𝑍 𝑖
] + 𝛼𝐾 log𝐾𝑡 + 𝛼𝐿 log 𝐿𝑡 .

At the steady state,

log𝑌 = log 𝜁 +
𝑁∑
𝑖=1

𝜆𝑖
[
log𝐴𝑖 + log𝑍∗

𝑖 − log𝑍 𝑖
] + 𝛼𝐾 log𝐾 + 𝛼𝐿 log 𝐿.

Find the difference of the two equations,

𝑌𝑡 =
𝑁∑
𝑖=1

𝜆𝑖𝐴𝑖𝑡 +
𝑁∑
𝑖=1

𝜆𝑖𝑍∗
𝑖𝑡 + 𝛼𝐾𝐾𝑡 + 𝛼𝐿𝐿𝑡 .

B. 4 Proof of Lemma 2

Proof. The evolvement of 𝐶ℎ,𝑡 and 𝐾𝑡 are respectively,

¤𝐶ℎ,𝑡
𝐶ℎ,𝑡

= 𝛼𝐾
𝑌𝑡
𝐾𝑡

− 𝛿 − 𝜌ℎ ,

¤𝐾𝑡
𝐾𝑡

= −𝛿 + (𝛼𝐾 + 𝛼𝐿) 𝑌𝑡𝐾𝑡 −
𝐶ℎ,𝑡
𝐾𝑡

.

The local dynamics around steady state can be summarized by the following system of equations,

𝑌𝑡 = 𝜇
(
𝛼𝐾𝐾𝑡 + 𝛼𝐿𝐿𝑡

)
,

𝐿𝑡 =
1

1 + 𝛾

(
𝑌𝑡 − 𝐶ℎ,𝑡

)
,

¤̂𝐾𝑡 = (𝛼𝐾 + 𝛼𝐿) 𝑌𝐾
(
𝑌𝑡 − 𝐾𝑡

)
− 𝐶ℎ
𝐾

(
𝐶ℎ,𝑡 − 𝐾𝑡

)
,

¤̂𝐶ℎ,𝑡 = 𝛼𝐾
𝑌
𝐾

(
𝑌𝑡 − 𝐾𝑡

)
.

This system can be reduced into law of motion of (𝑌𝑡 , 𝐾𝑡) pair,

𝐶ℎ,𝑡 =
𝛼𝐾(1 + 𝛾)

𝛼𝐿
𝐾𝑡 −

1 + 𝛾 − 𝛼𝐿𝜇

𝛼𝐿𝜇
𝑌𝑡 = 𝜖𝐶𝐾𝐾𝑡 + 𝜖𝐶𝑌𝑌𝑡

𝐿𝑡 =
−𝛼𝐾
𝛼𝐿

𝐾𝑡 + 1
𝜇𝛼𝐿

𝑌𝑡 = 𝜖𝐿𝐾𝐾𝑡 + 𝜖𝐿𝑌𝑌𝑡

¤̂𝐾𝑡 =
[
(𝛼𝐾 + 𝛼𝐿) 𝑌𝐾 − 𝐶ℎ

𝐾
𝜖𝐶𝑌

]
𝑌𝑡 −

[
(𝛼𝐾 + 𝛼𝐿) 𝑌𝐾 + 𝐶ℎ

𝐾
(𝜖𝐶𝐾 − 1)

]
𝐾𝑡 ,

¤̂𝐶ℎ,𝑡 = 𝜖𝐶𝐾
¤̂𝐾𝑡 + 𝜖𝐶𝑌

¤̂𝑌𝑡
¤̂𝑌𝑡 =

[
𝑌
𝐾
𝛼𝐾 − 𝜖𝐶𝐾(𝛼𝐾 + 𝛼𝐿)

𝜖𝐶𝑌
+ 𝐶ℎ
𝐾

𝜖𝐶𝐾

]
𝑌𝑡 +

[
𝐶ℎ
𝐾

𝜖𝐶𝐾 (𝜖𝐶𝐾 − 1)
𝜖𝐶𝑌

+ 𝑌
𝐾
𝜖𝐶𝐾 (𝛼𝐾 + 𝛼𝐿) − 𝛼𝐾

𝜖𝐶𝑌

]
𝐾𝑡
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where

𝜖𝐿𝐾 =
−𝛼𝐾
𝛼𝐿

, 𝜖𝐿𝑌 =
1

𝜇𝛼𝐿
, 𝜖𝐶𝐾 =

𝛼𝐾(1 + 𝛾)
𝛼𝐿

, 𝜖𝐶𝑌 = −1 + 𝛾 − 𝛼𝐿𝜇

𝛼𝐿𝜇
,

𝑌/𝐾 =
𝛿 + 𝜌ℎ
𝛼𝐾

, 𝐶ℎ/𝐾 = (�̄�𝐾 + �̄�𝐿) 𝑌𝐾 − 𝛿 =
(
𝛼𝐾 + 𝛼𝐿

𝛼𝐾

)
(𝛿 + 𝜌ℎ) − 𝛿.

We can vectorize the system, [ ¤̂𝑌𝑡
¤̂𝐾𝑡

]
= J

[
𝑌𝑡
𝐾𝑡

]
.

Each element in the Jacobian matrix J =

[
𝑥11 𝑥12

𝑥21 𝑥22

]
is given by

𝑥11 =
𝑌
𝐾
𝛼𝐾 − 𝜖𝐶𝐾(𝛼𝐾 + 𝛼𝐿)

𝜖𝐶𝑌
+ 𝐶ℎ
𝐾

𝜖𝐶𝐾 , 𝑥12 =
𝐶ℎ
𝐾

𝜖𝐶𝐾 (𝜖𝐶𝐾 − 1)
𝜖𝐶𝑌

+ 𝑌
𝐾
𝜖𝐶𝐾 (𝛼𝐾 + 𝛼𝐿) − 𝛼𝐾

𝜖𝐶𝑌
,

𝑥21 =
𝑌
𝐾
(𝛼𝐾 + 𝛼𝐿) − 𝐶ℎ

𝐾
𝜖𝐶𝑌 , 𝑥22 =

𝐶ℎ
𝐾

(1 − 𝜖𝐶𝐾) − 𝑌
𝐾
(𝛼𝐾 + 𝛼𝐿) .

B. 5 Proof of Proposition 3.1

Proof. The necessary and sufficient condition for indeterminate equilibrium to exist is given by

𝑑𝑒𝑡(J) > 0, 𝑡𝑟(J) < 0

Notice that

𝑑𝑒𝑡(J) = 𝑥11𝑥22 − 𝑥12𝑥21 =
(1 + 𝛾) (𝛿 + 𝜌ℎ)

[
𝛿 − (𝛿 + 𝜌ℎ) 𝛼𝐾+𝛼𝐿

𝛼𝐾

] (
1 − 𝜇𝛼𝐾

)
1 + 𝛾 − 𝜇𝛼𝐿

,

𝑡𝑟(J) = 𝑥11 + 𝑥22 =
(1 + 𝛾) (𝛿 + 𝜌ℎ) 𝛼𝐾+𝛼𝐿

𝛼𝐾
𝜇𝛼𝐾 − 𝛿 (1 + 𝛾) − 𝜌ℎ𝜇𝛼𝐿

1 + 𝛾 − 𝜇𝛼𝐿
.

Obviously,

(𝛿 + 𝜌ℎ) 𝛼𝐾 + 𝛼𝐿
𝛼𝐾

> 𝛿 + 𝜌ℎ > 𝛿,

thus 𝑑𝑒𝑡(J) > 0 is equivalent to
1 − 𝜇𝛼𝐾 > 0, 1 + 𝛾 − 𝜇𝛼𝐿 < 0,

and 𝑡𝑟(J) < 0 is equivalent to [
(1 + 𝛾) (𝛿 + 𝜌ℎ) 𝛼𝐾 + 𝛼𝐿

𝛼𝐾
𝛼𝐾 − 𝜌ℎ𝛼𝐿

]
𝜇 > 𝛿 (1 + 𝛾) .

Therefore, we can obtain from the above three inequalities the range of𝜇 that is both necessary and sufficient
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for the indeterminate equilibrium to exist.

max
{
𝜇∗

1 , 𝜇
∗
2
}
< 𝜇 < 𝜇∗

3

where

𝜇∗
1 =

1 + 𝛾

𝛼𝐿

𝜇∗
2 =

𝛿 (1 + 𝛾)
𝛼𝐾+𝛼𝐿
𝛼𝐾

(𝛿 + 𝜌ℎ) (1 + 𝛾) 𝛼𝐾 − 𝜌ℎ𝛼𝐿

𝜇∗
3 =

1
𝛼𝐾

C. STEADY STATE AND GLOBAL DYNAMICS

C. 1 Steady State Output

From Proposition 2.2, the equilibrium aggregate production function is given by

𝑌𝑡 = 𝜁
𝑁∏
𝑖=1

[
𝐴𝜆𝑖
𝑖𝑡

[
Θ𝑖

𝜌𝑒(𝜂𝑖 − 1)
(
1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

)]𝜆𝑖/𝜂𝑖 ]
𝐾
𝛼𝐾
𝑡 𝐿

𝛼𝐿
𝑡 .

Suppose all the sectors share the same level of productivity heterogeneity, i.e. 𝜂𝑖 = 𝜂 for all 𝑖. In the steady
state, the aggregate output solves the following nonlinear equation

𝑌𝜂+∑
𝜆𝑖−𝜂𝛼𝐾

(
𝑌
𝐾

)𝜂𝛼𝐾
=

(
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

)𝜂
·
𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖
,

where

𝜁 =
𝑁∏
𝑖=1

𝑘𝛼𝐾,𝑖𝑖 𝑙𝛼𝐿,𝑖𝑖

𝑁∏
𝑗=1

(
�̃�𝑆,𝑖𝑗

�̃�𝑖

�̃� 𝑗

)𝛼𝑆,𝑖𝑗 
𝜆𝑖

·
𝑁∏
𝑖=1

(
𝜑𝑖

�̃�𝑖

)𝜑𝑖
, 𝛼𝐾 = λ′α𝐾 , 𝛼𝐿 = λ′α𝐿.

The Euler equation of the households (A.1) together with the aggregate demand for capital (A.10) yields
the steady-state capital rental rate, which is inversely related to the output-capital ratio,

𝑅 = 𝛼𝐾
𝑌
𝐾

= 𝛿 + 𝜌ℎ ,
𝑌
𝐾

=
𝛿 + 𝜌ℎ
𝛼𝐾

.

Moreover, from the law of motion for aggregate capital (2.11), we can obtain the aggregate investment rate,
which yields the steady-state consumption-capital ratio,

𝐼𝑡 = (𝛼𝐾 + 𝛼𝐿)𝑌𝑡 − 𝐶ℎ,𝑡 = 𝛿𝐾𝑡 ,
𝐶ℎ
𝐾

= (𝛼𝑘 + 𝛼𝑙) 𝑌𝐾 − 𝛿.

The aggregate labor demand (A.9) together with the labor supply Euler equation (A.2) yields the steady-
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state wage and steady-state labor,

𝑊 = 𝛼𝐿
𝑌
𝐿

= 𝜓𝐿𝛾𝐶ℎ , 𝐿 =
(
𝛼𝐿
𝜓

𝑌/𝐾
𝐶ℎ/𝐾

) 1
1+𝛾

= ©«𝛼𝐿𝜓 1
(𝛼𝐾 + 𝛼𝐿) − 𝛿𝛼𝐾

𝛿+𝜌ℎ

ª®¬
1

1+𝛾

.

The steady-state aggregate output has the following representation:

𝑌𝜂+∑
𝜆𝑖−𝜂𝛼𝐾

(
𝛿 + 𝜌ℎ
𝛼𝐾

)𝜂𝛼𝐾
=

𝜁
(
𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖

) ©«𝛼𝐿𝜓 1
(𝛼𝐾 + 𝛼𝐿) − 𝛿𝛼𝐾

𝛿+𝜌ℎ

ª®¬
𝛼𝐿

1+𝛾 
𝜂

𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖
.

On the other hand, 𝑌 is bounded from below, i.e., 𝑌 ≥ 𝑌𝑚𝑖𝑛 , because the cutoff productivity is bounded
from below, i.e., 𝑍∗

𝑖 ≥ 𝑍 𝑖 (when Θ𝑖 = 0, all firms produce, and this includes the most unproductive firms). The
lower bound of output 𝑌𝑚𝑖𝑛 is given by

𝑌 = 𝜁
𝑁∏
𝑖=1

𝐴𝜆𝑖

𝑖 𝐿
𝛼𝐿

𝑁∏
𝑖=1

[
𝑍∗
𝑖

𝑍 𝑖

]𝜆𝑖
𝐾𝛼𝐾 ≥

[
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖

𝑖 𝐿
𝛼𝐿

]
𝐾𝛼𝐾 ≡ 𝑌𝑚𝑖𝑛 .

This section studies the steady states of themodel. Suppose all sectors share the same level of with-in sector
heterogeneity: 𝜂𝑖 = 𝜂, then in the steady state, the aggregate output solves following nonlinear equation

𝑌𝜂+∑
𝜆𝑖−𝜂𝛼𝐾

(
𝑌
𝐾

)𝜂𝛼𝐾
=

(
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

)𝜂 𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖
, (C.1)

where

𝜁 =
𝑁∏
𝑖=1

𝑘𝛼𝐾,𝑖𝑖 𝑙𝛼𝐿,𝑖𝑖

𝑁∏
𝑗=1

(
�̃�𝑆,𝑖𝑗

�̃�𝑖

�̃� 𝑗

)𝛼𝑆,𝑖𝑗 
𝜆𝑖

·
𝑁∏
𝑖=1

(
𝜑𝑖

�̃�𝑖

)𝜑𝑖
, 𝛼𝐾 = λ′α𝐾 , 𝛼𝐿 = λ′α𝐿.

Figure 8 showshowsteady-state output is determined.¹³ The blue solid curve plots the left-hand side of equation
(C.1), while the red dashed curve plots the right-hand side. The intersection of two curves yields two steady
states 𝑌𝐿 , 𝑌𝐻 . However, here we will mainly focus on the high steady state 𝑌𝐻 .

¹³Parameters: Φ = 0.005,φ =
[
0.5
0.5

]
, 𝛼𝑀 = 0.5, 𝜂 = 6,α𝑆 = 𝛼𝑀 ·

[
𝑎 1 − 𝑎

1 − 𝑏 𝑏

]
, 𝑎 = 0.3, 𝑏 = 0.3, 𝛾 = 0,𝜓 = 1, 𝛿 = 0.025.

44



Figure 8: Steady-state aggregate output

C. 2 Admissible Parameters

In this section we find endogenous restrictions on (Φ,Θ) combination such that interior solution of steady state
output exists. To make our analysis precise and simple, we assume symmetry in fixed cost Φ across sectors,
i.e. Φ𝑖 = Φ. For simplicity, we also assume all sectors share same productivity distribution, i.e. 𝜂𝑖 = 𝜂. Conse-
quently 𝑍 𝑖 = 𝑍.

In the steady state, the aggregate production function is

𝑌 = 𝜁
𝑁∏
𝑖=1

[
𝐴𝑖
𝑍∗
𝑖

𝑍 𝑖

]𝜆𝑖
𝐾𝛼𝐾𝐿𝛼𝐿 = 𝜁

𝑁∏
𝑖=1

[
𝐴𝜆𝑖
𝑖

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
1 − 𝜂Φ𝑖

�̃�𝑖𝑌

)]𝜆𝑖/𝜂]
𝐾𝛼𝐾𝐿𝛼𝐿 ,

which is equivalent to

𝑌1+∑𝑁
𝑖=1 𝜆𝑖/𝜂 = 𝜁

[
𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖/𝜂]
𝐾𝛼𝐾𝐿𝛼𝐿 .

Denote 𝜅 = 1 +∑𝑁
𝑖=1 𝜆𝑖/𝜂. Then the system of steady state can be expressed as the following

𝑌 =

{
𝜁

[
𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖/𝜂]
𝐾𝛼𝐾𝐿𝛼𝐿

} 1
𝜅

, (C.2)

𝛼𝐿
𝑌/𝐾
𝐶ℎ/𝐾 = 𝜓𝐿𝛾+1 ,

0 = 𝛼𝐾
𝑌
𝐾

− 𝛿 − 𝜌ℎ , (C.3)

0 = −𝛿 + (𝛼𝐾 + 𝛼𝐿) 𝑌𝐾 − 𝐶ℎ
𝐾
.
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From (C.3), we know 𝑌/𝐾 = 𝛿+𝜌ℎ
𝛼𝐾

≡ 𝑌𝐾 . Then (C.2) can be simplified as

𝑌 =

[
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

]
𝐾𝛼𝐾

𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
1 − 𝜂Φ𝑖

�̃�𝑖𝑌

)]𝜆𝑖/𝜂
,

𝑌1−𝛼𝐾𝑌𝛼𝐾
𝐾 =

[
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

]
𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
1 − 𝜂𝜙𝑖

�̃�𝑖

)]𝜆𝑖/𝜂
,

𝑌𝜂+∑
𝜆𝑖−𝜂𝛼𝐾𝑌𝜂𝛼𝐾

𝐾 =

(
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

)𝜂 𝑁∏
𝑖=1

[
Θ𝑖

𝜌𝑒(𝜂 − 1)
(
𝑌 − 𝜂Φ𝑖

�̃�𝑖

)]𝜆𝑖
, (C.4)

where

𝜁 =
𝑁∏
𝑖=1

𝑘𝛼𝐾,𝑖𝑖 𝑙𝛼𝐿,𝑖𝑖

𝑁∏
𝑗=1

(
�̃�𝑆,𝑖𝑗

�̃�𝑖

�̃� 𝑗

)𝛼𝑆,𝑖𝑗 
𝜆𝑖

·
𝑁∏
𝑖=1

(
𝜑𝑖

�̃�𝑖

)𝜑𝑖
, 𝛼𝐾 = λ′α𝐾 , 𝛼𝐿 = λ′α𝐿.

On the other hand 𝑌 has a lower bound 𝑌𝑚𝑖𝑛 , because 𝑍∗
𝑖 ≥ 𝑍 𝑖 . (When Θ = 0, all firms have to produce, this

includes the most unproductive firms.) 𝑌𝑚𝑖𝑛 is then given by

𝑌 = 𝜁
𝑁∏
𝑖=1

[
𝐴𝑖
𝑍∗
𝑖

𝑍 𝑖

]𝜆𝑖
𝐾𝛼𝐾𝐿𝛼𝐿 = 𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖

𝑖 𝐿
𝛼𝐿

𝑁∏
𝑖=1

[
𝑍∗
𝑖

𝑍 𝑖

]𝜆𝑖
𝐾𝛼𝐾

≥ 𝜁
𝑁∏
𝑖=1

𝐴𝜆𝑖

𝑖 𝐿
𝛼𝐿

𝑁∏
𝑖=1

[
𝑍 𝑖
𝑍 𝑖

]𝜆𝑖
𝐾𝛼𝐾 =

[
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖

𝑖 𝐿
𝛼𝐿

]
𝐾𝛼𝐾 ≡ 𝑌𝑚𝑖𝑛 ,

𝑌𝑚𝑖𝑛 ≡
[
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

]
𝐾𝛼𝐾 ,

𝑌𝑚𝑖𝑛 =

[(
𝜁

𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖 𝐿

𝛼𝐿

)
𝑌
−𝛼𝐾
𝐾

] 1
1−𝛼𝐾

.

Another constraint is to make sure (C.4) is well defined,

𝑌 >
𝜂Φ𝑖

�̃�𝑖
.

which places an upper bound on Φ𝑖 ,

Φ𝑖 <
𝑌min min(�̃�𝑖)

𝜂
.
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C. 3 Global Dynamics

This sectionmoves from the characterization of the local dynamics around steady states to the global dynamics.
Under Pareto distribution, the dynamic system on {𝑌𝑡 , 𝐾𝑡 , 𝐿𝑡 , 𝐼𝑡 , 𝐶ℎ,𝑡 ,𝑊𝑡 , 𝑅𝑡} is given by,

𝑌𝑡 = 𝜁
𝑁∏
𝑖=1

[
𝐴𝜆𝑖
𝑖𝑡

[
Θ𝑖𝑡

𝜌𝑒(𝜂𝑖 − 1)
(
1 − 𝜂𝑖𝜙𝑖

�̃�𝑖

)]𝜆𝑖/𝜂𝑖 ]
𝐾
𝛼𝐾
𝑡 𝐿

𝛼𝐿
𝑡 (C.5)

𝑊𝑡 = 𝛼𝐿
𝑌𝑡
𝐿𝑡
,

𝑊𝑡

𝐶ℎ,𝑡
= 𝜓𝐿𝛾𝑡 , 𝑅𝑡 = 𝛼𝐾

𝑌𝑡
𝐾𝑡
,

¤𝐶ℎ,𝑡
𝐶ℎ,𝑡

= 𝑅𝑡 − 𝛿 − 𝜌ℎ , (C.6)

¤𝐾𝑡 = −𝛿𝐾𝑡 + (𝛼𝐾 + 𝛼𝐿)𝑌𝑡 − 𝐶ℎ,𝑡 . (C.7)

Finally, the clearing condition of the labor markets implies that

𝐿𝑡 =
(
𝛼𝐿
𝜓

1
𝐶ℎ,𝑡/𝑌𝑡

) 1
1+𝛾

. (C.8)

Altogether, we have four variables {𝐾𝑡 , 𝑌𝑡 , 𝐶ℎ,𝑡 , 𝐿𝑡} with four equations (C.5), (C.6), (C.7), and (C.8). Substi-
tuting (C.8) into (C.5) yields an analytic formulation of 𝐶ℎ,𝑡 as a function of (𝐾𝑡 , 𝑌𝑡):

𝐶ℎ =

𝜁 ©«
𝑁∏
𝑖=1

𝐴𝜆𝑖
𝑖𝑡

(
Θ𝑖

𝜌𝑒 (𝜂𝑖 − 1)
(
1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

)) 𝜆𝑖
𝜂𝑖 ª®¬𝐾𝛼𝐾

𝑡

(
𝛼𝐿
𝜓
𝑌𝑡

) 𝛼𝐿
1+𝛾

𝑌−1
𝑡


1+𝛾
𝛼𝐿

.

Taking log on both sides yields

ln𝐶ℎ,𝑡 =
1 + 𝛾

𝛼𝐿

[
ln 𝜁 +

𝑁∑
𝑖=1

(
𝜆𝑖 ln𝐴𝑖𝑡 + 𝜆𝑖

𝜂
ln Θ𝑖

𝜌𝑒(𝜂𝑖 − 1)
)
+ 𝛼𝐿

1 + 𝛾
ln 𝛼𝐿

𝜓

+
𝑁∑
𝑖=1

𝜆𝑖
𝜂𝑖

ln
(
1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

)
+ 𝛼𝐾 ln𝐾𝑡 +

(
𝛼𝐿

1 + 𝛾
− 1

)
ln𝑌𝑡

]
.

We set 𝐴𝑖𝑡 = 𝐴𝑖 to consider deterministic case. Taking derivative of both sides with respect to 𝑡 yields

¤𝐶ℎ,𝑡
𝐶ℎ,𝑡

=
1 + 𝛾

𝛼𝐿


𝑁∑
𝑖=1

𝜆𝑖
𝜂𝑖

©«
𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

ª®¬
¤𝑌𝑡
𝑌𝑡

+ 𝛼𝐾
¤𝐾𝑡
𝐾𝑡

+
(

𝛼𝐿
1 + 𝛾

− 1
) ¤𝑌𝑡
𝑌𝑡


=

1 + 𝛾

𝛼𝐿


𝑁∑
𝑖=1

𝜆𝑖
𝜂𝑖

©«
𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

ª®¬ +
𝛼𝐿

1 + 𝛾
− 1


¤𝑌𝑡
𝑌𝑡

+ 𝛼𝐾 (1 + 𝛾)
𝛼𝐿

¤𝐾𝑡
𝐾𝑡
. (C.9)

Substituting (C.9) into (C.6), we have

1 + 𝛾

𝛼𝐿


𝑁∑
𝑖=1

𝜆𝑖
𝜂𝑖

©«
𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

1 − 𝜂𝑖Φ𝑖

�̃�𝑖𝑌𝑡

ª®¬ +
𝛼𝐿

1 + 𝛾
− 1


¤𝑌𝑡
𝑌𝑡

+ 𝛼𝐾 (1 + 𝛾)
𝛼𝐿

¤𝐾𝑡
𝐾𝑡

= 𝛼𝑘
𝑌𝑡
𝐾𝑡

− 𝛿 − 𝜌ℎ .
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Consequently, these yield twodifferential equations on (𝐾𝑡 , 𝑌𝑡). That is, we can simplify the dynamic system
into a 2-dimensional autonomous dynamical system on (𝐾𝑡 , 𝑌𝑡).

¤𝐾𝑡 = −𝛿𝐾𝑡 + (�̄�𝑘 + �̄�𝑙)𝑌𝑡 − 𝐶ℎ (𝐾𝑡 , 𝑌𝑡) ,

¤𝑌𝑡 =
[
𝛼𝐾 − 𝛼𝐾(1+𝛾)

𝛼𝐿
(𝛼𝐾 + 𝛼𝐿)

]
𝑌𝑡 −

[
𝛿 + 𝜌ℎ − 𝛿

𝛼𝐾(1+𝛾)
𝛼𝐿

]
𝐾𝑡 + 𝛼𝐾(1+𝛾)

𝛼𝐿
𝐶ℎ (𝑌𝑡 , 𝐾𝑡)

1+𝛾
𝛼𝐿

[
𝑁∑
𝑖=1

𝜆𝑖
𝜂𝑖

(
𝜂𝑖Φ𝑖
�̃�𝑖𝑌𝑡

1− 𝜂𝑖Φ𝑖
�̃�𝑖𝑌𝑡

)
+ 𝛼𝐿

1+𝛾 − 1

] · 𝑌𝑡
𝐾𝑡
.

D. DATA AND QUANTITATIVE EXERCISE

KLEMS. The KLEMS data are from BEA. This data includes capital expenditure, labor expenditure, gross
output and value added accounts at industry level. The capital expenditure is computed through aggregating
capital_art compensation, capital_IT compensation, capital_ohter compensation, capital_R&D compensation
and capital_software compensation accounts. The labor expenditure is computed through aggregating the
labor_nocol compensation and labor_col compensation accounts. The KLEMS data is for 63 industries and
we can aggregate them into 15 sectors according to NAICS classification. Table 2 and 3 list that each of 63
industries belongs to one of 15 sectors. The industry level capital share and labor share are computed through
the following equations:

�̃�𝐾,𝑖 =
capital expenditure𝑖

gross output𝑖
, �̃�𝐿,𝑖 =

labor expenditure𝑖
gross output𝑖

Input-output account. The input-output data are from BEA input-output accounts’s use table. These data
contains information on the uses of commodities 𝑗 by intermediate 𝑖 and final users. For BEA aggregation in
I-O tables, 15 sectors are approximately the North American Industry Classification System (NAICS) sectors.
The industry level intermediate input share is computed through the following equation:

�̃�𝑆,𝑖𝑗 =
𝑖′s expenditure on commodity 𝑗

gross output𝑖

The final expenditure share is computed through the following equation:

𝜑𝑖 =
final user's expenditure on commoditry 𝑖

total final user expenditure

These data also contains information on industry level gross operating surplus. We can use this piece of
information to calculate the wedge E

[
𝑍𝑖
𝑍∗
𝑖
|𝑍𝑖 ≥ 𝑍∗

𝑖

]
.

E

[
𝑍𝑖
𝑍∗
𝑖
|𝑍𝑖 ≥ 𝑍∗

𝑖

]
=

𝑃𝑖𝑂𝑖

𝑊𝐿𝑖 + 𝑅𝐾𝑖 +∑
𝑃𝑗𝑆𝑖 𝑗

=
Sales𝑖

Expenditure𝑖
=

gross output𝑖
gross output𝑖 − gross operating surplus𝑖

≥ 1

With this piece of information, we can also calculate the cost based input-output matrix:

𝛼𝐾,𝑖 =
capital expenditure𝑖

gross output𝑖 − gross operating surplus𝑖
, 𝛼𝐿,𝑖 =

labor expenditure𝑖
gross output𝑖 − gross operating surplus𝑖
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Industry Name NACIS-2 digit NACIS Sector

Farms 1 11
Forestry, fishing, and related activities 2 11
Oil and gas extraction 3 21
Mining, except oil and gas 4 21
Support activities for mining 5 21
Utilities 6 22
Construction 7 23
Wood products 8 31G
Nonmetallic mineral products 9 31G
Primary metals 10 31G
Fabricated metal products 11 31G
Machinery 12 31G
Computer and electronic products 13 31G
Electrical equipment, appliances, and components 14 31G
Motor vehicles, bodies and trailers, and parts 15 31G
Other transportation equipment 16 31G
Furniture and related products 17 31G
Miscellaneous manufacturing 18 31G
Food and beverage and tobacco products 19 31G
Textile mills and textile product mills 20 31G
Apparel and leather and allied products 21 31G
Paper products 22 31G
Printing and related support activities 23 31G
Petroleum and coal products 24 31G
Chemical products 25 31G
Plastics and rubber products 26 31G
Wholesale trade 27 42
Retail trade 28 44RT
Air transportation 29 48TW
Rail transportation 30 48TW
Water transportation 31 48TW

Table 2: Merge 63 industries into 15 sectors(1)
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Industry Name NACIS-2 digit NACIS Sector

Truck transportation 32 48TW
Transit and ground passenger transportation 33 48TW
Pipeline transportation 34 48TW
Other transportation and support activities 35 48TW
Warehousing and storage 36 48TW
Publishing industries, except internet (includes software) 37 51
Motion picture and sound recording industries 38 51
Broadcasting and telecommunications 39 51
Data processing, internet publishing, and other information services 40 51
Federal Reserve banks, credit intermediation, and related activities 41 FIRE
Securities, commodity contracts, and investments 42 FIRE
Insurance carriers and related activities 43 FIRE
Funds, trusts, and other financial vehicles 44 FIRE
Real estate 45 FIRE
Rental and leasing services and lessors of intangible assets 46 FIRE
Legal services 47 PROF
Computer systems design and related services 48 PROF
Miscellaneous professional, scientific, and technical services 49 PROF
Management of companies and enterprises 50 PROF
Administrative and support services 51 PROF
Waste management and remediation services 52 PROF
Educational services 53 6
Ambulatory health care services 54 6
Hospitals and nursing and residential care facilities 55 6
Social assistance 56 6
Performing arts, spectator sports, museums, and related activities 57 7
Amusements, gambling, and recreation industries 58 7
Accommodation 59 7
Food services and drinking places 60 7
Other services, except government 61 81
Federal 62 G
State and local 63 G

Table 3: Merge 63 industries into 15 sectors (2)
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𝛼𝑆,𝑖𝑗 =
𝑖′s expenditure on commodity 𝑗

gross output𝑖 − gross operating surplus𝑖
In addition, since we assume that the firm level productivity follows the Pareto distribution, the industry

level productivity wedge is related to Pareto distribution parameter in the following way:

E

[
𝑍𝑖
𝑍∗
𝑖
|𝑍𝑖 ≥ 𝑍∗

𝑖

]
=

𝜂𝑖
𝜂𝑖 − 1

Then we can back out distribution parameter 𝜂𝑖 through the following equation:

𝜂𝑖 =
1

1 − 1

E

[
𝑍𝑖
𝑍∗𝑖

|𝑍𝑖≥𝑍∗
𝑖

] .

Debt ratio. We estimate the industry level financial constraint 𝜃𝑖𝑡 using the industry level debt ratio. The
industry level debt ratio data is from the Compustat dataset onWharton Research Data Services. This database
includes debt in current liability (code: dlc), long-term debt (code: dltt), and total asset (code: at) accounts. The
firm level debt ratio is computed through the following equation:

debt ratio =
dlc + dltt

at
We use the ratio of each company’s sale to corresponding industry’s sales to create a weight to modulate the
industry level debt ratio.

Fixed cost. The fixed cost can be computed using the following equation:

Θ𝑖𝑡

𝜌𝑒

[
𝜉

(
𝑍∗
𝑖𝑡

) − 𝜙𝑖𝑡
]
=

�̃�𝑖𝑡

E
[
𝑍𝑖
𝑍∗
𝑖
|𝑍𝑖 ≥ 𝑍∗

𝑖

]
where the operational profit is given by

𝜉(𝑍∗
𝑖𝑡) = �̃�𝑖𝑡

©«1 − �̃�𝐾,𝑖𝑡 − �̃�𝐿,𝑖𝑡 −
𝑁∑
𝑗=1

�̃�𝑆,𝑖𝑗𝑡
ª®¬

Then we can infer the fixed cost,

𝜙𝑖𝑡 = 𝜉
(
𝑍∗
𝑖𝑡

) − �̃�𝑖𝑡

E
[
𝑍𝑖
𝑍∗
𝑖
|𝑍𝑖 ≥ 𝑍∗

𝑖

] 𝜌𝑒
𝜃𝑖𝑡

Evaluate the likelihood of self-fulfilling business cycles. Then we can calculate the industry level fi-
nancial multiplier and aggregate financial multiplier:

𝜐𝑖 =

(
�̃�𝑖
𝜙𝑖

− 𝜂𝑖

)−1

, 𝜚 =
𝑁∑
𝑖=1

𝜐𝑖𝜆𝑖 , 𝜇 =
1

1 − 𝜚

We next evaluate whether 𝜇 lies within the indeterminacy region. The necessary and sufficient condition
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for equilibrium indeterminacy is given by

max
{
𝜇∗

1 , 𝜇
∗
2
}
< 𝜇 < 𝜇∗

3 ,

𝜇∗
1 =

1 + 𝛾

𝛼𝐿
, 𝜇∗

2 =
𝛿 (1 + 𝛾)

𝛼𝐾+𝛼𝐿
𝛼𝐾

(𝛿 + 𝜌ℎ) (1 + 𝛾) 𝛼𝐾 − 𝛼𝐿𝜌ℎ
, 𝜇∗

3 =
1
𝛼𝐾

.

where 𝛼𝐾,𝑡 = λ′
𝑡α𝐾 , 𝛼𝐿,𝑡 = λ′

𝑡α𝐿, 𝛼𝐿,𝑡 = λ̃
′
𝑡α̃𝐿,𝑡 , 𝛼𝐾,𝑡 = λ̃

′
𝑡α̃𝐾,𝑡 .
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